《工学硕士论文答辩PPT》由会员分享,可在线阅读,更多相关《工学硕士论文答辩PPT(18页珍藏版)》请在金锄头文库上搜索。
1、基于Kinect的虚拟视合成研究,学生:李精华 专业:信号与信息处理 导师:吕朝辉,目录,1. 选题背景及意义 2. 研究现状 3. 论文的整体结构框架 4. 深度图像修复方法及结果对比 5. 虚拟视图像合成框图 6. 总结与展望,选题背景及意义,目前,基于双目的立体视频系统在技术上已渐成熟,多视点立体视频系统成为研究热点。 视图合成技术是各种三维/多视点视频应用,如3D电影、3D电视、3D视频会议、自由视点电视(FTV)等领域的关键技术。,研究现状,目前合成虚拟视图的方法有两种: (1)基于模型的虚拟视点合成(Model Based Rendering, MBR)技术; (2)基于图像的虚拟
2、视点合成(Image Based Rendering, IBR)技术; 基于深度图像的虚拟视绘制(Depth Image Based Rendering)是对传统的IBR的一种改进。,论文整体系统框架,Kinect数据采集,深度图像修复方法,深度图修复结果定性分析一,深度图修复结果定性分析一,深度图修复结果定量分析,由于实际的深度图像很难获取,那么我们选择对Middlebury数据库里的数据进行定量分析。我们从这个数据库中选取2幅来进行实验:Art和Moebius。为了能够进行定量对比,我们在深度图像中手动添加空洞,我们该深度图像中画黑色的区域表示在黑线处没有深度值来作为待修复的深度图像,如下
3、图所示。,深度图修复结果定量分析一,深度图修复结果定量分析一,深度图修复结果定量分析二,深度图修复结果定量分析二,虚拟视图像合成框图,DIBR系统的关键技术是三维映射(3D Image Warping),DIBR合成系统如下:,虚拟视点图像合成结果展示,(a) (b) (c),(d) (e) (f),(a)(b)(c)为基线不同的三个虚拟视点;修复后对应的三个虚拟视点(d)(e)(f),总结与展望,本文虽然对深度图像修复取得了较好的效果,但是深度图修复方法对彩色图具有一定的依赖性,未来可以对深度图像修复做一个自适应的滤波器来修复。另外修复时间不是很理想,未来可以通过并行化处理,缩短修复时间。,Thank You !,欢迎各位专家提出宝贵意见,