第二讲 电力电子器件——电气工程讲坛培训讲学

上传人:yuzo****123 文档编号:141249713 上传时间:2020-08-05 格式:PPT 页数:44 大小:1.86MB
返回 下载 相关 举报
第二讲 电力电子器件——电气工程讲坛培训讲学_第1页
第1页 / 共44页
第二讲 电力电子器件——电气工程讲坛培训讲学_第2页
第2页 / 共44页
第二讲 电力电子器件——电气工程讲坛培训讲学_第3页
第3页 / 共44页
第二讲 电力电子器件——电气工程讲坛培训讲学_第4页
第4页 / 共44页
第二讲 电力电子器件——电气工程讲坛培训讲学_第5页
第5页 / 共44页
点击查看更多>>
资源描述

《第二讲 电力电子器件——电气工程讲坛培训讲学》由会员分享,可在线阅读,更多相关《第二讲 电力电子器件——电气工程讲坛培训讲学(44页珍藏版)》请在金锄头文库上搜索。

1、第二讲 电力电子器件,1-1,同济大学 张文豪,主要内容,1-2,1、电力电子器件概述,电子技术的基础 电子器件:晶体管和集成电路 电力电子电路的基础 电力电子器件 本章主要内容: 概述电力电子器件的概念、特点和分类等问题。 介绍常用电力电子器件的工作原理、基本特性。,1-3,1.1 电力电子器件的概念和特征,1)概念: 电力电子器件(Power Electronic Device) 可直接用于主电路中,实现电能的变换或控制的电子器件。 主电路(Main Power Circuit) 电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 2)分类: 电真空器件 (汞弧整流器、闸流管) 半

2、导体器件 (采用的主要材料硅)仍然,1-5,电力电子器件,1.1 电力电子器件的概念和特征,能处理电功率的能力,一般远大于处理信息的电子器件。 电力电子器件一般都工作在开关状态。 电力电子器件往往需要由信息电子电路来控制。 电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。,1-6,3)同处理信息的电子器件相比的一般特征:,1.1.1 电力电子器件的概念和特征,通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。,1-7,主要损耗,通态损耗,断态损耗,开关损耗,关断损耗,开通损耗,电力电子器件的损耗,1.1.2 应用电力电子器件系统组

3、成,1-8,电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。,图1-1 电力电子器件在实际应用中的系统组成,在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行,电气隔离,控制电路,1.1.3 电力电子器件的分类,半控型器件(Thyristor) 通过控制信号可以控制其导通而不能控制其关断。 全控型器件(IGTO,IGBT,MOSFET) 通过控制信号既可控制其导通又可控制其关 断,又称自关断器件。 不可控器件(Power Diode) 不能用控制信号来控制其通断, 因此也就不需要驱动电路。,1-9,按照器件能够被控制的程度,分为以下三类

4、:,1.1.3 电力电子器件的分类,电流驱动型 通过从控制端注入或者抽出电流来实现导通或者 关断的控制。 电压驱动型 仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。,1-10,按照驱动电路信号的性质,分为两类:,1.2 不可控器件电力二极管,1.2.1 PN结与电力二极管的工作原理 1.2.2 电力二极管的基本特性 1.2.3 电力二极管的主要参数(略),1-11,1.2 不可控器件电力二极管引言,Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。 快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替

5、代的地位。,1-12,整流二极管及模块,1.2.1 PN结与电力二极管的工作原理,基本结构和工作原理与信息电子电路中的二极管一样。 由一个面积较大的PN结和两端引线以及封装组成的。 从外形上看,主要有螺栓型和平板型两种封装。,1-13,图1-2 电力二极管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号,1.2.1 PN结与电力二极管的工作原理,1-14,PN结的状态,二极管的基本原理就在于PN结的单向导电性这一主要特征。 反向击穿雪崩击穿、齐纳击穿(留作思考) PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ,又称为微分电容。,1.2.2 电力二极管的基本特

6、性,主要指其伏安特性 门槛电压UTO,正向电流IF开始明显增加所对应的电压。 与IF对应的电力二极管两端的电压即为其正向电压降UF 。 承受反向电压时,只有微小而数值恒定的反向漏电流。,1-15,图1-4 电力二极管的伏安特性,1) 静态特性,1.2.2 电力二极管的基本特性,2) 动态特性 二极管的电压-电流特性随时 间变化的 结电容的存在,1-16,图1-5 电力二极管的动态过程波形 a) 正向偏置转换为反向偏置 b) 零偏置转换为正向偏置,延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf 恢复特性的软度:下降时间与延迟时间 的比值

7、tf /td,或称恢复系数,用Sr表示。,1.2.2 电力二极管的基本特性,正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如 2V)。 正向恢复时间tfr。 电流上升率越大,UFP越高 。,1-17,零偏置转换为正向偏置,开通过程:,关断过程 须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。 关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。,正向偏置转换为反向偏置,1.2.3 电力二极管的主要参数,正向平均电流IF(AV) 指电力二极管长期运行时,在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。 IF

8、(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。 正向压降UF 指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。 反向重复峰值电压URRM 指对电力二极管所能重复施加的反向最高峰值电压。 使用时,应当留有两倍的裕量。,18/89,1.2.3 电力二极管的主要参数,最高工作结温TJM 结温是指管芯PN结的平均温度,用TJ表示。 最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。 TJM通常在125175C范围之内。 反向恢复时间trr 浪涌电流IFSM 指电力二极管所能承受最大的连续一个或几个工频周期的过电流

9、。,19/89,1.3 半控器件晶闸管,1.3.1 晶闸管的结构与工作原理 1.3.2 晶闸管的基本特性 1.3.3 晶闸管的主要参数(略),1-20,1.3 半控器件晶闸管引言,1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。 开辟了电力电子技术迅速发展和广泛应用的崭新时代。 20世纪80年代以来,开始被全控型器件取代。 能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位。,1-21,晶闸管(Thyristor):晶体闸流管,可控硅整流器(Silicon Controlled RectifierSCR),1.3.1

10、晶闸管的结构与工作原理,外形有螺栓型和平板型两种封装。 有三个联接端。 螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。 平板型晶闸管可由两个散热器将其夹在中间。,1-22,图1-6 晶闸管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号,1.3.1 晶闸管的结构与工作原理,常用晶闸管的结构,1-23,螺栓型晶闸管,晶闸管模块,平板型晶闸管外形及结构,1.3.1 晶闸管的结构与工作原理,式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。由以上式可得 :,1-24,图1-7 晶闸管的双晶体管模型及其工作原理

11、a) 双晶体管模型 b) 工作原理,按晶体管的工作原理 ,得:,(1-5),1.3.1 晶闸管的结构与工作原理,在低发射极电流下 是很小的,而当发射极电流建立起来之后, 迅速增大。 阻断状态:IG=0,1+2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和。 开通状态:注入触发电流使晶体管的发射极电流增大以致1+2趋近于1的话,流过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际由外电路决定。,1-25,1.3.1 晶闸管的结构与工作原理,阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高 光触发 光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电

12、力设备中,称为光控晶闸管(Light Triggered ThyristorLTT)。 只有门极触发是最精确、迅速而可靠的控制手段。,1-26,其他几种可能导通的情况:,1.3.2 晶闸管的基本特性,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 晶闸管一旦导通,门极就失去控制作用。 要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下 。,1-27,晶闸管正常工作时的特性总结如下:,1.3.2 晶闸管的基本特性,(1)正向特性 IG=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。 正向电压超过

13、正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低。 晶闸管本身的压降很小,在1V左右。,1-28,1) 静态特性,图1-8 晶闸管的伏安特性 IG2IG1IG,1.3.2 晶闸管的基本特性,反向特性类似二极管的反向特性。 反向阻断状态时,只有极小的反相漏电流流过。 当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。,1-29,图1-8 晶闸管的伏安特性 IG2IG1IG,(2)反向特性,1.3.2 晶闸管的基本特性,1) 开通过程 延迟时间td (0.51.5s) 上升时间tr (0.53s) 开通时间tgt以上两者之和, tgt=td+ tr (

14、1-6),1-30,2) 关断过程 反向阻断恢复时间trr 正向阻断恢复时间tgr 关断时间tq以上两者之和tq=trr+tgr (1-7) 普通晶闸管的关断时间约几百微秒,2) 动态特性,图1-9 晶闸管的开通和关断过程波形,1.3.3 晶闸管的主要参数,断态重复峰值电压UDRM 在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。 反向重复峰值电压URRM 在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。 通态(峰值)电压UT 晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。,1-31,通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。 选

15、用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。,使用注意:,1)电压定额,1.3.3 晶闸管的主要参数,通态平均电流 IT(AV) 在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。 使用时应按有效值相等的原则来选取晶闸管。 维持电流 IH 使晶闸管维持导通所必需的最小电流。 擎住电流 IL 晶闸管刚从断态转入通态并移除触发信号后, 能维持导通所需的最小电流。对同一晶闸管来说,通常IL约为IH的24倍。 浪涌电流ITSM 指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流 。,1-32

16、,2)电流定额,1.3.3 晶闸管的主要参数,除开通时间tgt和关断时间tq外,还有: 断态电压临界上升率du/dt 指在额定结温和门极开路的情况下,不导致晶闸管从断态到通 态转换的外加电压最大上升率。 电压上升率过大,使充电电流足够大,就会使晶闸管误导通 。 通态电流临界上升率di/dt 指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 如果电流上升太快,可能造成局部过热而使晶闸管损坏。,1-33,3)动态参数,1.4 典型全控型器件,1.4.1 门极可关断晶闸管 1.4.2 电力晶体管(略) 1.4.3 电力场效应晶体管(略) 1.4.4 绝缘栅双极晶体管(略),1-34,1.4 典型全控型器件引言,门极可关断晶闸管在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。 典型代表门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。,1-35,1.4 典型全控型器件引言,常用的典型全控型器件,1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号