第三章 凝聚与絮凝(2020年8月整理).pdf

上传人:xiang****la438 文档编号:140994003 上传时间:2020-08-03 格式:PDF 页数:10 大小:341.26KB
返回 下载 相关 举报
第三章 凝聚与絮凝(2020年8月整理).pdf_第1页
第1页 / 共10页
第三章 凝聚与絮凝(2020年8月整理).pdf_第2页
第2页 / 共10页
第三章 凝聚与絮凝(2020年8月整理).pdf_第3页
第3页 / 共10页
第三章 凝聚与絮凝(2020年8月整理).pdf_第4页
第4页 / 共10页
第三章 凝聚与絮凝(2020年8月整理).pdf_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《第三章 凝聚与絮凝(2020年8月整理).pdf》由会员分享,可在线阅读,更多相关《第三章 凝聚与絮凝(2020年8月整理).pdf(10页珍藏版)》请在金锄头文库上搜索。

1、一 寸 光 阴 不 可 轻 1 第三章第三章 凝聚与絮凝凝聚与絮凝 名词解释名词解释 1. 凝聚:胶体脱稳并生成微小絮凝体的过程; 2. 絮凝:脱稳的胶体或微小悬浮物聚结成大的絮凝体的过程; 3. 混凝:凝聚和絮凝的总称,分别解释。 4. 势垒: 5. 聚沉值:在指定情形下使一定量的胶体颗粒聚沉所需的电解质的最低浓度。 6. 临界电位:将 电位降至某一数值使胶体颗粒总势能曲线上的势垒处 E=0, 胶体颗粒即可产生凝聚作用,此时的 电位称为临界电位。 7. 盐基度:B=OH/3Al=n/6 其比值表示水解和聚合反应的程度。 8. Stern 层:在与胶体表面附近一、两个分子厚的区域内,反离子由于

2、受到胶体 表面电荷强烈的静电引力而与胶体紧密吸附在一起, 这一固定吸附层为 stern 层。 考点总结考点总结 胶体胶体 1. 定义:定义: 尺寸在 1nm-1m 之间颗粒, 包括浊质, 天然有色成分, 病毒, 细菌类, 藻类。 2. 去除原因:去除原因:使水产生浑浊的原因;水中细菌、病毒、污染物的载体;为专项 杂质去除的前驱工艺,减轻后部负荷。 3. 胶体带电原因:胶体带电原因: 1) 同晶置换同晶置换, 胶体颗粒结晶中的晶格取代使胶体表面产生电 荷;2)电离电离,胶体颗粒表面某些化学基团在水中电离使胶体带点;3)胶体 颗粒表面与水作用后溶解溶解并电解使胶体带点; 4) 胶体颗粒对水中某些离

3、子的 吸附吸附使胶体带电。 4. 胶体双电层结构:胶体双电层结构:受静电引力、热运动扩散、溶剂化力的共同作用。 胶核电位形成离子 束缚反粒子 自由反粒子 吸附层 扩散层 一 寸 光 阴 不 可 轻 2 5. Stern 模型模型 电位:电位:双电层内层与外层之间的电位差; 电位:电位:又称 Stern 电位,为 stern 平面相对溶液内部的电位差; 电位:电位:胶粒在滑动面上相对溶液内部的电位差。该电位为胶体体系稳定性 的指示,其绝对值越大,胶体越稳定,越难处理。 6. 胶体稳定的原因胶体稳定的原因 1. 动力稳定性:动力稳定性:胶体尺寸较小,布朗运动可以客服重力,使胶体稳定; 2. 带电稳

4、定性:带电稳定性:两个带相同电荷的胶体颗粒存在静电斥力; 3. 溶剂化稳定性:溶剂化稳定性:胶体颗粒周围有一层水分子规律定向排列的水化层,胶体靠 近时,水化层中水分子被挤压变形产生反弹力; 7. 胶体混凝机理胶体混凝机理 1) 压缩双电层作用压缩双电层作用:高价态离子替换低价态离子使双电层变薄; 2) 吸附吸附电中和作用电中和作用:胶体颗粒表面吸附异号离子、异号胶体颗粒或带 异号电荷的高分子, 从而中和了胶体颗粒本身所带部分电荷, 减少了胶 体颗粒间的静电斥力,使胶体更易于聚沉。 3) 吸附吸附架桥作用:架桥作用:高分子物质与胶粒也产生吸附作用,起胶粒与胶粒 之间的桥梁作用。 4) 网捕网捕卷

5、扫作用:卷扫作用: 当铝 (铁) 盐混凝剂投量很大而形成大量氢氧化物沉 淀时, 会像多孔的网一样, 将水中的胶体颗粒和悬浮浊质捕获、 卷扫下 来,称网捕或卷扫作用。 (都不可过量投加,吸附电中和会导致带异号电荷再次稳定,高分子絮凝剂会产 生类似水化膜的高分子层产生反弹力) PAC 主要利用水解缩合过程中产生的高价多核配合物的压缩双电层作用和 吸附电中和作用。 8. 絮凝影响因素絮凝影响因素 影响水混凝的主要因素有:水温、pH 值、碱度、水中浊质颗粒浓度、水 中有机污染物、混凝剂种类与投加量、混凝剂投加方式、水利条件。 水温:影响混凝剂水解效果,水的黏度,水的布朗运动。对于低温水处 理,可以采用

6、助凝剂,回流泥渣或采用接触过滤的形式。 pH 值:影响混凝剂的水解效果,对高分子絮凝剂影响相对较小。 一 寸 光 阴 不 可 轻 3 碱度:起到缓冲作用,保证絮凝状态的最优酸碱度,并保证管网水质。 水中浊质颗粒浓度: 浊质颗粒浓度过低时, 颗粒间的碰撞几率大大减小, 混凝效果变差。浊质过高时,所需的混凝剂量也将大幅度增加。 水中有机污染物:水中有机物对胶体有保护稳定作用,将胶体颗粒保护 起来,阻碍胶体颗粒之间的碰撞,阻碍混凝剂与胶体颗粒之间的脱稳凝集作 用。 混凝剂种类与投加量;混凝剂投加方式;水力条件。 9. 硫酸铝作用机理和预先水解原因硫酸铝作用机理和预先水解原因 硫酸铝不断水解过程中,吸

7、附架桥作用不断增强,压缩双电层作用不断减 少。 预先水解 10. 同向絮凝和异向絮凝同向絮凝和异向絮凝及影响及影响因素因素 异向絮凝: 由布朗运动引起的颗粒碰撞聚集称为异向絮凝。 布朗运动 所造成的颗粒碰撞速率与水温成正比,与颗粒的数量浓度平方成正比,而 与颗粒尺寸无关。 同向絮凝:由水力或机械搅拌所造成的流体运动引起的颗粒碰撞聚集 称为同向絮凝。 颗粒同向碰撞速率与颗粒浓度平方成正比, 与粒径的三次 方(即体积)成正比,与速度梯度 G 成正比。 11. 混合和絮凝过程混合和絮凝过程 参数 混合 絮凝 搅拌强度 G=700-1000s-1 G=20-70s-1 GT=1*104-105 时间

8、10-20s 10-30min 控制原因 使胶体颗粒迅速脱稳,超过 水解反应时间水解产物自身 会聚合产生沉淀物,压缩双 电层和吸附电中和能力降低 使细小颗粒之间产生速度梯度;有 足够的反应时间使颗粒逐渐增长到 可以重力沉降的颗粒尺寸。 设施 水力混合、水泵混合、 管式混合、机械混合 机械絮凝池/隔板絮凝池/折板絮凝 池/栅条网格絮凝池、穿孔流絮凝池 一 寸 光 阴 不 可 轻 4 12. 往复式隔板絮凝池与回转式隔板絮凝池往复式隔板絮凝池与回转式隔板絮凝池 类型 往复式 回转式 特点 转折处能量消耗大,絮体碰 撞机会大,易引起絮体破 碎,施工容易 避免絮体破碎,减少颗粒碰撞,但 进水管在池底,

9、施工困难 13. 混凝剂投加方式、优缺点及其适用条件。混凝剂投加方式、优缺点及其适用条件。 投加方式 重力投加 压力投加 加药泵 优点 操作简单, 投加安全可靠 设备简单,使用方 便,不受药液池高 程所限 可以定量投加,不受 压力管压力所限 缺点 必须建造高位药熔 池,增加加药间高 层 效率较低,如药液 浓度不当,可能引 起堵塞 价格较贵,泵易引起 堵塞,养护较麻烦 适用条件 中小型水厂;考虑 输液管线的水损, 输液管线不宜过长 各种规模均适用 适用于大中型水厂 一 寸 光 阴 不 可 轻 5 第四章第四章 沉淀沉淀 1. 自由沉降: 发生在水中悬浮固体浓度不高的情况下, 颗粒各自单独进行沉降

10、, 颗粒的沉淀轨迹呈直线。 整个过程中, 颗粒的物理性质不发生变化。 (颗粒离 器壁距离50d,溶液体积浓度小于 0.002) 2. 拥挤沉降:当水中有大量颗粒在有限的水体中沉降时,由于颗粒相互之间会 产生影响, 致使颗粒沉速较自由沉降时小, 这种现象称为拥挤沉降。(浑液面、 沉降层、过渡层、淤积层) 3. 界面沉降:当水中悬浮物浓度较高(5000mg/L 以上),粒径分布较均匀时,拥 挤沉降会在上部澄清水和下部浑水出现明显界面。清浑水之间的界面称为浑 液面。 (二次沉淀池后期与污泥浓缩池初期沉降均属此类) 4. 压缩沉降:由于悬浮颗粒浓度很高,颗粒相互之间已挤集成团块结构,互相 接触,互相支

11、承,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥 得到浓缩。二沉池污泥斗及污泥浓缩池中污泥的浓缩过程属此类沉淀。 5. 临界点:在浑液面沉降过程线中由直线段转入曲线段的分界点。 6. 接触絮凝:利用高浓度泥渣层进行接触絮凝,同时利用泥渣层良好的固液分 离特性,在一个构筑物中同时完成“絮凝”和“沉淀”两个过程,将泥渣层作为 接触介质的过程实际上也是絮凝过程。 7. 截留沉速:在沉淀区始端位于水表面的颗粒处于最不利位置,如果这个颗粒 的运动轨迹恰与池底末端相交,那这一粒径的颗粒恰在此时能全部沉淀,这 个恰能沉淀的速度称为截留速度。 8. 截留沉速与表面负荷率:颗粒的截留沉速 u 与沉淀池表面

12、负荷 Q/A 相等。但 含义不同,表面负荷代表单位沉淀面积上承受的水量;而截留沉速 u 反映了 沉淀池所能全部去除的颗粒中的最小颗粒沉速。 9. 浅池理论:按照理想沉淀池原理,在保持截留沉速 u。和水平流速 v 都不变 的条件下,减少沉淀池的深度,就能相应地减少沉淀时间和缩短沉淀池的长 度。即为浅池理论。 10. 气浮:将杂质颗粒黏附于气泡上,加快分离速度,在较短实现固、液分离。 一 寸 光 阴 不 可 轻 6 1. 理想沉淀池理想沉淀池的假定条件的假定条件 (1)颗粒颗粒处于自由沉淀状态。即在沉淀过程中,颗粒之间互不干扰,颗粒的大 小、形状和密度不变,因此,颗粒的沉速始终不变。 (2)水流水

13、流沿水平方向流动。在过水断面上,各点流速相等,并在流动过程中流 速始终不变。 (3)颗粒沉到池底即认为已被去除,不再返回水流中。 2. 上向流、下向流和水平流斜板斜管沉淀池的适用条件上向流、下向流和水平流斜板斜管沉淀池的适用条件 由于浑水异重流对于斜板斜管沉淀池的影响,平流沉淀池用于浊度较低的 水的沉淀,上向流斜板、斜管沉淀池可用于悬浮物浓度很高的水,应用最广, 下向流斜板沉淀只适宜用于浊度很低的水的沉淀。 3. 机械搅拌澄清池的工作原理机械搅拌澄清池的工作原理 澄清池利用泥渣加速了絮凝过程,使结成的絮体粗大,沉降速度增大,从而提 高其处理的表面负荷,一般上升流速可达 1.0-1.2m/s,

14、,远高于沉淀池表面符 合。由于澄清池内泥渣老化会影响处理效果,应保证原水的浊度,确保泥渣的 更新速度。 4. 高密度澄清池的工作原理高密度澄清池的工作原理 一 寸 光 阴 不 可 轻 7 第五章第五章 过滤过滤 1. 变速过滤:水头损失保持不变,则滤速减小,这叫变速(减速)过滤。滤 速随时间而逐渐减小的过滤过程称“变速过滤”或“减速过滤” 2. 等速过滤:保持滤池进水流量不变,即滤速保持不变,则水头损失增大,这 叫等速(恒速)过滤。 3. 有效直径和不均匀系数:d10,表示通过滤料重量 10%的筛孔孔径(mm) , 它反映滤料中细颗粒的尺寸。 d80, 指通过滤料重量 80%的筛孔孔径 (mm

15、) 。 它反映滤料中粗颗粒的尺寸。d80 与 d10 的比值称为滤料的不均匀系数。通 常希望 K 不大于 2。 4. 孔隙度:孔隙在滤层中所占比例。粒径,这个均匀滤料的比表面积与世纪的 不均匀滤料的比表面积相等。 5. 当量粒径:一假象均匀滤料的粒径,这个均匀滤料的表面积与实际的不均匀 滤料的比表面积相等。 6. 冲洗强度:以 cm/s 计的反冲洗强度,换算成单位面积滤层所通过的冲洗流 量。以 L/(sm2)计。 7. 滤层膨胀度:反冲洗时,滤层膨胀后所增加的厚度与膨胀前厚度之比。 8. 级配: 滤料粒径级配是指滤料中各种粒径颗粒所占的重量比例。 , 滤料的粒度 分布常用级配曲线表示。 9.

16、滤池工作周期: 滤池从开始工作到冲洗结束。(工作周期一般选取压力周期, 容易控制且可以保障出水水质) 10. 水质周期:滤池从开始进入有效过滤器到出水浊度达到泄露值,称为水质周 期。 11. 压力周期:随澄清过程的进行,滤层的水头损失 h 逐渐增加,当增至最大值 时,便需对滤层进行反冲洗,这时滤池的过滤周期称为压力周期。 12. 作用水头:滤前水的最高水位与滤后水水位(常为清水池水位)之差。 13. 工作层:能使水中悬浮物浓度不断减小的滤层称为工作层。 14. 泄漏点:滤层工作层移至滤层下缘时,滤池的出水浊度便开始升高,出现悬 浮物穿透滤层的现象,即达到泄漏点。 15. 水力分级:由相对密度不同的滤料组成的滤层,能够在反冲洗时互不混杂而 保持各自的分层状态

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 商业计划书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号