[所有分类]偏心距增大系数讲课教案

上传人:yuzo****123 文档编号:140039865 上传时间:2020-07-26 格式:PPT 页数:43 大小:781KB
返回 下载 相关 举报
[所有分类]偏心距增大系数讲课教案_第1页
第1页 / 共43页
[所有分类]偏心距增大系数讲课教案_第2页
第2页 / 共43页
[所有分类]偏心距增大系数讲课教案_第3页
第3页 / 共43页
[所有分类]偏心距增大系数讲课教案_第4页
第4页 / 共43页
[所有分类]偏心距增大系数讲课教案_第5页
第5页 / 共43页
点击查看更多>>
资源描述

《[所有分类]偏心距增大系数讲课教案》由会员分享,可在线阅读,更多相关《[所有分类]偏心距增大系数讲课教案(43页珍藏版)》请在金锄头文库上搜索。

1、,偏心距增大系数,,,,,取h=1.1h0,第六章 受压构件,l0,第六章 受压构件, 有侧移结构,其二阶效应主要是由水平荷载产生的侧移引起的。 精确考虑这种二阶效应较为复杂,一般需通过考虑二阶效应的结构分析方法进行计算。 由于混凝土结构开裂的影响,在考虑二阶效应的结构分析时应将结构构件的弹性抗弯刚度乘以折减修正系数: 对梁取修正系数0.4, 对柱取修正系数0.6。,对已采用考虑二阶效应的弹性分析方法确定结构内力时,以下受压构件正截面承载力计算公式中的hei应用(M/N+ea)代替。,第六章 受压构件,6.6 矩形截面正截面承载力计算,一、不对称配筋截面设计 1、大偏心受压(受拉破坏),已知:

2、截面尺寸(bh)、材料强度( fc、fy,fy )、构件长细比(l0/h)以及轴力N和弯矩M设计值, 若heieib.min=0.3h0, 一般可先按大偏心受压情况计算,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,第六章 受压构件,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将

3、代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,第六章 受压构件,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,若As若小于rminbh? 应取As=rminbh。,第六章 受压构件,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,2、小偏心受压(受压破坏)

4、heieib.min=0.3h0,两个基本方程中有三个未知数,As、As和x,故无唯一解。,小偏心受压,即x xb,ss - fy ,则As未达到受压屈服 因此,当xb x (2b -xb),As 无论怎样配筋,都不能达到屈服, 为使用钢量最小,故可取As =max(0.45ft/fy, 0.002bh)。,第六章 受压构件,另一方面,当偏心距很小时,如附加偏心距ea与荷载偏心距e0方向相反, 则可能发生As一侧混凝土首先达到受压破坏的情况。 此时通常为全截面受压,由图示截面应力分布,对As取矩,可得,,e=0.5h-a-(e0-ea), h0=h-a,第六章 受压构件,确定As后,就只有x

5、和As两个未知数,故可得唯一解。 根据求得的x ,可分为三种情况,若x (2b -xb),ss= -fy,基本公式转化为下式,,若x h0h,应取x=h,同时应取a =1,代入基本公式直接解得As,第六章 受压构件,重新求解x 和As,由基本公式求解x 和As的具体运算是很麻烦的。 迭代计算方法 用相对受压区高度x ,,在小偏压范围x =xb1.1,,第六章 受压构件,对于级钢筋和C50混凝土,as在0.40.5之间,近似取0.45,as=x(1-0.5x) 变化很小。,As(1)的误差最大约为12%。 如需进一步求较为精确的解,可将As(1)代入基本公式求得x,,第六章 受压构件,取as =

6、0.45,试分析证明上述迭代是收敛的,且收敛速度很快。,二、不对称配筋截面复核,在截面尺寸(bh)、截面配筋As和As、材料强度(fc、fy,f y)、以及构件长细比(l0/h)均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况: 1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M,第六章 受压构件,2、给定轴力作用的偏心距e0,求轴力设计值N,1、给定轴力设计值N,求弯矩作用平面的弯矩设计值M 由于给定截面尺寸、配筋和材料强度均已知,未知数? 只有x和M两个。,若N Nb,为大偏心受压,,若N Nb,为小偏心受压,,由(a)式求x以及偏心距增大系数h,代入(b)式求e0,弯矩

7、设计值为M=N e0。,第六章 受压构件,2、给定轴力作用的偏心距e0,求轴力设计值N,若heie0b,为大偏心受压,未知数为x和N两个,联立求解得x和N。,第六章 受压构件,若heie0b,为小偏心受压 联立求解得x和N, 尚应考虑As一侧混凝土可能先压坏的情况,e=0.5h-a-(e0-ea),h0=h-a,另一方面,当构件在垂直于弯矩作用平面内的长细比l0/b较大时,尚应根据l0/b确定的稳定系数j,按轴心受压情况验算垂直于弯矩作用平面的受压承载力 上面求得的N 比较后,取较小值。,第六章 受压构件,三、对称配筋截面 实际工程中,受压构件常承受变号弯矩作用,当弯矩数值相差不大,可采用对称

8、配筋。 采用对称配筋不会在施工中产生差错,故有时为方便施工或对于装配式构件,也采用对称配筋。 对称配筋截面,即As=As,fy = fy,a = a,其界限破坏状态时的轴力为Nb=a fcbxbh0。,第六章 受压构件,因此,除要考虑偏心距大小外,还要根据轴力大小(N Nb)的情况判别属于哪一种偏心受力情况。,1、当heieib.min=0.3h0,且N Nb时,为大偏心受压 x=N /a fcb,若x=N /a fcb2a,可近似取x=2a,对受压钢筋合力点取矩可得,e = hei - 0.5h + a,第六章 受压构件,2、当heieib.min=0.3h0,为小偏心受压 或heieib.

9、min=0.3h0,但N Nb时,为小偏心受压,由第一式解得,代入第二式得,这是一个x 的三次方程,设计中计算很麻烦。为简化计算,如前所说,可近似取as=x(1-0.5x)在小偏压范围的平均值,,代入上式,第六章 受压构件,由前述迭代法可知,上式配筋实为第二次迭代的近似值,与精确解的误差已很小,满足一般设计精度要求。 对称配筋截面复核的计算与非对称配筋情况相同。,6.5 工形截面正截面承载力计算(自学),第六章 受压构件,四、Nu-Mu相关曲线 interaction relation of N and M,对于给定的截面、材料强度和配筋,达到正截面承载力极限状态时,其压力和弯矩是相互关联的,

10、可用一条Nu-Mu相关曲线表示。根据正截面承载力的计算假定,可以直接采用以下方法求得Nu-Mu相关曲线:,取受压边缘混凝土压应变等于ecu; 取受拉侧边缘应变; 根据截面应变分布,以及混凝土和钢筋的应力-应变关系,确定混凝土的应力分布以及受拉钢筋和受压钢筋的应力; 由平衡条件计算截面的压力Nu和弯矩Mu; 调整受拉侧边缘应变,重复和,第六章 受压构件,理论计算结果 等效矩形计算结果,第六章 受压构件,Nu-Mu相关曲线反映了在压力和弯矩共同作用下正截面承载力的规律,具有以下一些特点:,相关曲线上的任一点代表截面处于正截面承载力极限状态时的一种内力组合。 如一组内力(N,M)在曲线内侧说明截面未

11、达到极限状态,是安全的; 如(N,M)在曲线外侧,则表明截面承载力不足;,第六章 受压构件,当弯矩为零时,轴向承载力达到最大,即为轴心受压承载力N0(A点); 当轴力为零时,为受纯弯承载力M0(C点);,截面受弯承载力Mu与作用的轴压力N大小有关; 当轴压力较小时,Mu随N的增加而增加(CB段); 当轴压力较大时,Mu随N的增加而减小(AB段);,第六章 受压构件,截面受弯承载力在B点达(Nb,Mb)到最大,该点近似为界限破坏; CB段(NNb)为受拉破坏, AB段(N Nb)为受压破坏;,对于对称配筋截面,达到界限破坏时的轴力Nb是一致的。,第六章 受压构件,如截面尺寸和材料强度保持不变,N

12、u-Mu相关曲线随配筋率的增加而向外侧增大;,6.7 受压构件的斜截面受剪承载力,一、单向受剪承载力,压力的存在 延缓了斜裂缝的出现和开展 斜裂缝角度减小 混凝土剪压区高度增大,第八章 受压构件,但当压力超过一定数值?,第八章 受压构件,由桁架-拱模型理论,轴向压力主要由拱作用直接传递,拱作用增大,其竖向分力为拱作用分担的抗剪能力。 当轴向压力太大,将导致拱机构的过早压坏。,第八章 受压构件,对矩形截面,规范偏心受压构件的受剪承载力计算公式,l为计算截面的剪跨比,对框架柱,l=Hn/h0,Hn为柱净高;当l3时,取l=3; 对偏心受压构件,l= a /h0,当l3时,取l=3;a为集中荷载至支

13、座或节点边缘的距离。 N为与剪力设计值相应的轴向压力设计值,当N0.3fcA时,取N=0.3fcA,A为构件截面面积。,为防止配箍过多产生斜压破坏,受剪截面应满足,可不进行斜截面受剪承载力计算,而仅需按构造要求配置箍筋。,第八章 受压构件,二、斜向受剪承载力,试验表明,钢筋混凝土柱在斜向剪力作用下,其受剪承载力随剪力作用方向而变化。 对于矩形截面柱,斜向受剪承载力与剪力作用方向之间近似为椭圆关系,因此应考虑剪力作用方向对受剪承载力的影响。规范给出的斜向受剪承载力为,,第八章 受压构件,6.8 受压构件的延性(Ductility), 压力较小时,为受拉破坏,具有一定的延性。 当压力逐渐增加,从受

14、拉钢筋屈服到受压边缘混凝土压坏的过程缩短,延性逐渐降低。 当轴压力超过界限轴力时,受拉侧钢筋达不到受拉屈服,延性将只取决于混凝土受压的变形能力,因此延性很小。,第八章 受压构件,第八章 受压构件,第八章 受压构件,试验和分析均表明,对于一般配箍情况,影响延性的主要因素是相对受压区高度x 。x 越小,延性越大。,第八章 受压构件,延性系数 ductility factor 曲率延性系数 m =f u /f y 位移延性系数 m =D u /D y,曲率延性系数,试验和分析均表明,对于一般配箍情况,影响延性的主要因素是相对受压区高度x 。x 越小,延性越大。,第八章 受压构件,延性系数 ducti

15、lity factor 曲率延性系数 m =f u /f y 位移延性系数 m =D u /D y,位移延性系数,第八章 受压构件, 轴压力较大时,即x x b,很难通过截面受力钢筋的配置来改善延性 增加箍筋的配置来约束混凝土,通过提高混凝土的变形能力来改善延性。 另一方面,受剪破坏都具有明显的脆性性质。为保证正截面延性能力的发挥,对延性较高要求的抗震结构,设计中应按“强剪弱弯”原则设计受压构件。, 轴力的增加导致x 增加,使延性减小。 增加受压钢筋,可减小x ,可提高延性。,第八章 受压构件,6.9 受压构件的配筋构造要求,材料强度: 混凝土:受压构件的承载力主要取决于混凝土强度,一般应采用

16、强度等级较高的混凝土。目前我国一般结构中柱的混凝土强度等级常用C30C40,在高层建筑中,C50C60级混凝土也经常使用。 钢筋:通常采用级和级钢筋,不宜过高。?,截面形状和尺寸: 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 圆形截面主要用于桥墩、桩和公共建筑中的柱。 柱的截面尺寸不宜过小,一般应控制在l0/b30及l0/h25。 当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。,第八章 受压构件,纵向钢筋: 纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝土受压脆性破坏的缓冲作用。同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。 规范规定,轴心受压构件、偏心受压构件全部纵向钢筋的配筋率不应小于0.5%;当混凝土强度等级大于C50时不应小于0.6%;一侧受压钢筋的配筋率不应小于0.2%,受

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号