《零排放形势下热电厂脱硫废水处理进展及展望》由会员分享,可在线阅读,更多相关《零排放形势下热电厂脱硫废水处理进展及展望(14页珍藏版)》请在金锄头文库上搜索。
1、零排放形势下热电厂脱硫废水处理进展及展望摘要:针对国内愈益严格的环保政策及逐渐深入的零排放形势,结合脱硫废水的水质和主要问题,综述了热电厂脱硫废水的传统处理工艺和零排放工艺的研究与应用现状。脱硫废水具有高悬浮物、高盐、水质复杂、波动大等特征,传统处理工艺主要存在效果不稳定、产水不达标、结垢腐蚀严重和浓盐水排放问题。简述了脱硫废水传统处理工艺及其改进工艺的研究与应用现状,指出其在零排放形势下已不满足处理要求,而逐渐转换为预处理工艺。重点论述了零排放组合工艺的预处理、重金属去除、浓缩减量和盐结晶固化单元工艺的研究与进展,总结了目前脱硫废水零排放技术的发展进程,并分析总结了若干典型应用案例,指出“膜
2、分离+蒸发结晶”组合工艺将会成为深度处理与零排放的关键工艺。零排放是未来热电厂脱硫废水处理的主要途径,亟需加快新材料、新装备、新工艺等在脱硫废水零排放的工业化应用进程。关键词: 脱硫废水; 零排放; 膜分离技术; 蒸发结晶;预处理火力发电是我国最重要的电力组成,尽管近10年来火电占比逐渐降低,但火电发电量和火电设备装机量依然在逐年增加图1a) 1-2。随着烟气排放管理与控制日益严格,烟气脱硫是火电厂不可或缺的过程。烟气脱硫技术主要包括前端脱硫、干法、半干法和湿法脱硫,其中湿法脱硫具有反应快、效率高等优点,全球应用占比达85%2。湿法脱硫采用液态吸收剂吸收SO2和其它污染组分,主要包括钠碱法、氨
3、法、氧化镁法、有机胺法、石灰石-石膏法等,其中石灰石-石膏法由于操作简单、效率高、技术成熟、稳定性好而成为最主流的脱硫技术,约90%发达国家的火电厂采用该技术。我国火电厂主要采用石灰石-石膏法脱硫,脱硫石膏产量逐年增加图1b) 3,尽管湿法脱硫产生的脱硫废水量少,但污染负荷高、处理难度大,已成为电厂亟待解决的难题之一。脱硫废水呈弱酸性且悬浮物和盐含量极高,并含有多种重金属,是电厂水处理中的难点与重点。脱硫废水处理经历了从重力沉降到三联箱工艺的发展,三联箱工艺结合传统混凝、化学沉淀、澄清等单元,可去除悬浮物、重金属和部分COD,是目前主流的脱硫废水处理工艺。随着水质排放标准的提高、工业用水取水指
4、标的严格限制和工业废水回用的强烈需求,火电厂脱硫废水处理从悬浮物、COD的去除逐渐上升到重金属去除和脱盐,现有三联箱工艺不能满足排放要求4,新型处理工艺或组合工艺的开发成为解决电厂脱硫废水处理的重要内容。废水零排放是近年来工业废水特别是高浓高盐废水处理的新方向,在全球范围内得到广泛的研究和应用。针对脱硫废水水量较少,但污染负荷高、处理难度大的特点,近年来脱硫废水零排放工艺的研究和应用成为火电厂水处理技术的重点内容,也逐渐实现了从小试到中试及工程应用的发展。传统的直接利用余热蒸发的策略存在效率低、占地大、结垢、腐蚀严重等问题,新型零排放工艺研发与应用成为今后火电厂脱硫废水处理的主要内容。因此,本
5、论文从脱硫废水的产生及主要问题出发,介绍了传统脱硫废水的处理工艺,重点从预处理工艺、重金属去除、浓缩减量、盐结晶固化4个方面综述了零排放形势下脱硫废水处理的应用和研究进展,以期为脱硫废水的零排放处理提供参考。1 脱硫废水的产生及主要问题石灰石-石膏湿法脱硫采用石灰乳循环吸收烟气中的SO2,吸收过程生成石膏,为保障石膏品质,一般采用Cl浓度进行控制(控制限值一般为20 000 mg /L) ,定期排出一定量的脱硫废水并补充新鲜吸收液。随着脱硫吸收液的循环浓缩,脱硫废水主要特征如表1所示5:1)悬浮物含量高(SS:5. 0 80. 7 g /L) ,其主要组成为微米级的硫酸钙和亚硫酸钙粒子,沉降性
6、能差(图2) ;2)盐含量 高(TDS:18. 1 121. 5 g /L) ,主要离子为Na+、Ca2+、Mg2+、Cl、F、SO24和SO23等,属于高盐废水,虽然排放标准(火电厂石灰石-石膏湿法脱硫废水水质控制指标DL /T997-2006)对常规离子暂时未做限制;3)多种重金属超标;4)还原性含硫物质是COD的重要组成;5)受烟气成分变动、吸收液用水的水质差异、脱硫系统管理难控制等限制,脱硫废水的水质和水量波动显著,对处理工艺的适应性提出了更高要求6-7。脱硫废水处理过程的主要难点在于:1) 采用传统方法难以实现悬浮物的高效去除,固液分离时间长;2) 设备和管路的结垢腐蚀严重;3) 化
7、学污泥具有毒性和高污染性;4) 水质水量变动对处理工艺冲击大。因此,脱硫废水的处理一直是电厂亟需解决的关键问题,特别是在废水排放标准逐渐严格的条件下,传统的三联箱工艺已经无法满足水处理的要求。2 脱硫废水传统处理工艺及其进展传统脱硫废水处理技术包括重力沉降、化学沉淀、微生物法和湿地等技术,其中化学沉淀应用最广泛。脱硫废水首先需要解决的问题是去除悬浮物和重金属。重力沉降法在初期得到应用,但因其沉降速率慢、占地大、溶解性污染物去除效果低,逐渐被其他工艺替代。化学沉淀法通过投加化学试剂与重金属、F和S等形成盐沉淀,是目前主要的重金属控制策略。三联箱工艺是我国脱硫废水处理应用最为广泛的技术,将混凝与化
8、学沉淀工艺结合实现悬浮物和重金属的去除。但该工艺投药量大、固液分离速率慢、分离效果差、污泥量大,且由于脱硫废水的水质波动大,导致经常出现出水不达标和系统崩溃8。同时,三联箱工艺处理过程产生的高盐废水仍然无法达标排放,成为火电厂亟需解决的关键问题9-10。因此,三联箱工艺的改进工艺和方法的开发得到大量研究,首先是反应器的设计与优化。Tian等11采用二联箱代替传统三联箱,利用计算流体力学模拟优化反应器结构,并采用固态药剂的投加方式,结合澄清与过滤,去除悬浮物和重金属。新型药剂研发与应用也是简化三联箱工艺、降低运行成本的重要手段。华能杨柳青电厂改造后采用干粉投加的方式仅通过一种高效无机混凝剂就可实
9、现脱硫废水的达标排放12,大唐某电厂采用一体化的脱硫废水处理设备,通过投加一种亲水聚合物药剂实现脱硫废水的达标排放13。向朝虎14采用一种新型高效吸附剂简化三联箱工艺,可减少费用46. 5万元/a。优化反应过程及控制策略也是提升三联箱工艺处理效率的有效方法。费锡智等15对广东某电厂脱硫废水三联箱工艺进行优化,通过污泥回流实现了废水的稳定 达标排放 (DL /T997-2006) ; 新疆某火电厂也采用了相同策略改进三联箱工艺16。为进一步提高悬浮物的去除效果,保障后续处理过程的稳定,三联箱可与多介质过滤或微滤(MF) 等工艺结合。Enoch等17将MF与化学沉淀组合,通过提高膜面流速和周期反冲
10、控制膜污染,表现出稳定的悬浮物和重金属去除效果。周卫青等18发现化学沉淀-MF组合工艺可以显著增强抗冲击负荷性能、自控性和减少占地,同时满足废水达标。随着脱硫废水深度处理与零排放工艺的发展,三联箱工艺成为有效的预处理工艺,其与MF或超滤(UF) 的组合工艺得到了广泛应用。脱硫废水中大量含硫物质可以促进硫酸盐还原菌(sulphate reduction bacteria,SB) 的生长和生物氧化还原过程,有机物可以作为微生物的生长基质,因此,微生物法可以有效去除脱硫废水中的有机物、硫酸盐、氮和某些重金属。美国EPA的调查结果显示,美国有3%的电厂采用生物技术处理脱硫废水( 图3) 19。Chao
11、等20用结合硫代谢的生物降解-电子转移工艺 (Biodegradation-Electrontransfer with sulfur metabolism integrated process,BESI) 处理脱硫废水,通过SB作用,COD、TOC、氨氮和总氮的去除率分别为87. 99%、87. 04%、30. 77%和45. 17%。陈涛等21考察了上流式厌氧污泥床反应器(UASB) 的脱硫废水处理效果,利用SB作用,可在高负荷条件下(SO24负荷为6 kgm-3d-1) 有效去除78%的COD和82%的SO24。人工湿地和流化床技术也在脱硫废水处理中得到推广应用,主要是利用植物和催化剂的作
12、用去除某些重金属22-23。此外,直接将脱硫废水排放至除灰系统、进行煤场喷洒、或灰渣闭式循环系统排放也是解决脱硫废水的方案之一,利用余热蒸发废水实现零排放而结晶盐作为灰渣处理,但存在突出的腐蚀风险24-25。3 零排放工艺的研究与应用进展脱硫废水零排放是目前热电厂一个重要的研究方向,美国目前已有37%的电厂实现了脱硫废水的零排放( 图3),我国也开展了大量的研究,实现了从实验室小试到中试以及规模化应用的推广。针对脱硫废水的水质水量特征,零排放处理工艺主要包括悬浮物去除、重金属去除、浓缩减量和盐结晶固化4个过程,其他污染物包括有机物则在4个过程中被逐步去除。3. 1 预处理技术预处理是保障脱硫废
13、水零排放的根本,主要进行悬浮物去除、pH值调节、废水软化和部分溶解性污染物去除。传统脱硫废水处理技术在升级改造过程中成为主要的预处理技术,其与MF /UF的组合是目前预处理工艺的主要选择。生物处理、电解、电渗析等技术也在预处理中得到了应用。作为预处理技术,重力沉降和化学沉淀法等传统技术主要用于去除悬浮物。除硬是预处理的重要过程,特别是深度处理过程采用膜技术的情况下,传统化学软化法和离子交换法除硬得到了广泛应用。刘海洋等26发现,采用NaOH软化脱硫废水提高了混凝效果,原因是形成的Mg(OH)2晶粒促进了混凝剂的卷扫捕集作用。刘亚鹏等27考察了CaSO4晶 种 法、FS-66药剂、Ca(OH)2
14、 + Na2CO3、NaOH+Na2CO3 4种软化方式的影响,发现NaOH +Na2CO3法的钙镁和全硅去除效果最佳,可以保障后续MF稳定运行。但传统化学软化法无法有效分离Ca和Mg,混合沉积物只能作为固废处理。Xia等28采用两步沉淀法实现了Ca去除和Mg回收,并基于热力学分析和实验验证方式考察了Na2CO3、Na2C2O4、NaF、Na2 SO44种添加剂对Ca的选择性沉淀效果,Mg(OH)2质量分数可达99. 3%。脱硫废水中硫酸盐浓度极高,是结垢的重要成分,Yu等29采 用石灰与NaAlO2共沉淀方式去除硫酸盐,去除率可达83. 94%( 从4 881 mg /L降低到784 mg
15、/L)。氯是脱硫废水的一种重要盐成分,是水处理领域的难点,电解-电渗析组合技术可通过电极反应氧化Cl形成Cl2,同时获得副产物H2和Ca(OH)2,可为脱硫废水Cl控制与去除提供一种新思路30。三联箱工艺与MF或UF组合是去除悬浮物和大分子有机物的重要手段,是目前零排放形势下最普遍采用的预处理技术。连坤宙等31的研究表明,MF处理脱硫废水效果稳定,产水浊度和SDI值分别低于0. 2 NTU和4. 0,满足反渗透(O) 进水要求。管式微滤膜(TMF) 由于分离效果好且膜污染较轻,常应用于三联箱废水的二次过滤31-32。UF在脱硫废水预处理中也得到了广泛关注33-35。三联箱工艺也和多介质过滤、高
16、密度澄清池等工艺或装置组合去除悬浮物,以 满 足 后 续 深 度 处 理要求37-38。电絮凝结合了电解和混凝的技术特点,具有药剂投加量少、去除效果好、pH使用条件宽等优势,可同时去除悬浮物、总氮、有机物和特定重金属。Liu等39基于Fe /C /Al电极,采用电絮凝处理脱硫废水,SS和COD的去除率可达99. 9%和89%,同时F、Ni、Hg、Mn、Pb、Cd、Cu等去除率可达86% 98%。严刚等40优化电絮凝操作条件,可有效去除脱硫废水的浊度、SS,并可脱色和去除部分重金属。基于硫循环的微生物处理技术可去除脱硫废水中的有机物和氮。Wei等20以整合硫代谢的生物降解-电子转移工艺(BESI) 处理脱硫废水,利用硫酸盐促进SB的硫代谢反应,COD、TOC、氨氮和总氮的去除率分别为87. 99%、87. 04%、3