高铝质耐火材料的性能文献综述精品

上传人:精****库 文档编号:138138786 上传时间:2020-07-13 格式:DOC 页数:72 大小:1.50MB
返回 下载 相关 举报
高铝质耐火材料的性能文献综述精品_第1页
第1页 / 共72页
高铝质耐火材料的性能文献综述精品_第2页
第2页 / 共72页
高铝质耐火材料的性能文献综述精品_第3页
第3页 / 共72页
高铝质耐火材料的性能文献综述精品_第4页
第4页 / 共72页
高铝质耐火材料的性能文献综述精品_第5页
第5页 / 共72页
点击查看更多>>
资源描述

《高铝质耐火材料的性能文献综述精品》由会员分享,可在线阅读,更多相关《高铝质耐火材料的性能文献综述精品(72页珍藏版)》请在金锄头文库上搜索。

1、摘要本文为了测定高铝质陶瓷蓄热材料的抗热震性能、常温抗压强度等性能,通过比较蓄热材料中各种矿物组成的性质差异,选择了莫来石、氧化铝和二氧化硅为骨料的配方,制作成蓄热陶瓷小球。经过适当的成型和烧结工艺,研制开发了高铝质陶瓷球蓄热体。用水骤冷实验法测试不同配方制作的陶瓷球在高温下的抗热震性能,以及用液压机测定小球的抗压强度。初步讨论其损坏机理。通过实验得出以下结论:以莫来石、氧化铝和二氧化硅为骨料制作的陶瓷球蓄热体的抗热震性能非常好,急冷急热次数达到30次以上;该配方样品的抗压强度适中,能够符合工作的要求。该种以莫来石、氧化铝和二氧化硅为骨料配方的陶瓷蓄热体是很好的也是比较理想的蓄热体。关键词:蓄

2、热材料 陶瓷球 莫来石 抗热震性 抗压强度AbstractBased on the rolling mill regenerative furnace production practice, By comparing various storage materials mineral composition differences in the nature and chose mullite, alumina and silica formulation of the aggregate production of ceramic regenerator into small balls.

3、 After the forming and sintering technology, we developed a high alumina ceramic ball regenerator. Sudden cold water experiment testing different formula produced by the high temperature ceramic ball in the thermal shock resistance. and the use of hydraulic machine compressive strength of the small

4、ball. Discuss its preliminary damage mechanism. Through experiments come to the following conclusions : mullite, alumina and silica for the aggregate production of ceramic ball regenerator of thermal shock resistance is very good. Heat cooled rapidly reachs 30 above; The samples moderate strength to

5、 meet the job requirements. Formulation of the kinds of ceramic regenerator is a very good comparison is the ideal regenerator.Key words : storage materials ceramic ball mullite thermal shock resistance strength 目录一、 文献综述4绪论51、蓄热技术的发展51.1国内蓄热式燃烧技术情况61.2蓄热燃烧技术和蓄热材料71.3 蓄热体材质的选择81.4 蓄热体形状的选择92、蓄热式热交换器

6、的工作原理102.1 蓄热式燃烧器工作原理122.2 蜂窝体蓄热式燃烧装置的特点122.3 多孔蓄热材料的设计与选择153、蓄热材料的性能要求183.1 蓄热材料损坏的成因和机理194、展望新一代优质高效耐火材料214.1氧化物- 非氧化物复合材料214.2 含游离CaO 的碱性材料224.3 高效不定形耐火材料和梯度浇注料225、 高铝质陶瓷蓄热材料235.1 高铝质耐火制品的性能235.2 莫来石24二、 实验251、 实验原理261.1 固体材料的热震表征261.2 熔渣侵蚀机理272、 实验过程272.1 原料与试样制备282.2 试样制备过程292.3 烧结过程302.4 热震实验3

7、12.5 机械强度测定实验32三、实验结果与分析371、抗热震实验分析372、机械强度测试结果与分析45四、结论47参考文献48致谢50附件51一、 文献综述绪论加热炉是轧钢厂的关键设备,是轧钢厂的“心脏”。因此,加热炉的运行状况、维修次数的多少、使用寿命的长短等因素历来受到轧钢厂的极大关注。耐火材料对加热炉的运行有着极大的影响,耐火材料的技术进步和耐火材料的性能、质量,不仅影响加热炉的炉型结构,而且影响着加热炉的运行状况、维修频次和使用寿命。燃而,由于加热炉属于长期运行的,又是非常关键的热工设备,各轧钢厂对加热炉材料的选择非常慎重,加上各耐火材料企业对新材料在加热炉上的应用也是慎之又慎,因此

8、,加热炉用耐火材料的技术进步(尤其是蓄热式耐火材料)要比炼钢用耐火材料的技术进步相对滞后。我国加热炉用耐火材料先后经历了普通粘土砖、高铝砖、捣打料和可塑料、普通浇注料和高性能浇注料时期。近年来,一大批耐火材料的研究和生产单位,对加热炉用耐火材料进行了大量的研究,使加热炉用耐火材料得到了长足的进步,我国加热炉用耐火材料的技术已接近世界先进水平。1、蓄热技术的发展 蓄热式热交换技术为上世纪80 年代兴起的新型节能技术, 该技术的最大特点是高效节能,平均节能率在现有基础上可再提高30 %。随着该项技术在国内的广泛应用, 尤其是在轧钢加热炉上的应用, 节能效果十分显著。但是在蓄热材料的选材方面, 缺乏

9、进一步的深入研究, 蓄热体材料的使用寿命很短, 致使这一技术优越性得不到充分发挥。没有根据蓄热式热交换技术的应用要求进行有针对性开发研究, 所以目前大量加热炉所用的蓄热体材料寿命最好的在5 个月左右,最差的仅2 个月。频繁地停炉检修、更换材料,严重地影响了加热炉的作业率, 给加热炉生产带来不必要的经济损失。此外, 由于造成蓄热体材料损坏的原因和机理不同, 蓄热材料的性能必须有针对性地进行研究, 才能从根本上解决好蓄热体材料的损坏问题。本文在对蓄热体材料的损坏原因和机理进行深入分析研究的基础上, 开发出新型的蓄热性能好, 抗热震、抗渣的高铝质蓄热体材料,提高了蓄热材料的使用寿命, 提高加热炉的作

10、业率, 真正起到增产节约的作用。1.1国内蓄热式燃烧技术情况中国自二十世纪八十年代开始有国外译文介绍,八十年代中后期国内热工界也开始研究新型蓄热式技术,建立了专门的陶瓷球蓄热式实验装置。东北大学、北京科技大学、机械部第五设计研究院、冶金部鞍山热能研究院等对此技术都有研究,但是工业应用很少。1998年9月萍乡钢铁有限责任公司首次和大连北岛能源技术有限公司合作采用蓄热式燃烧技术进行轧钢连续式加热炉燃烧纯高炉煤气技术的开发研究,并率先在萍钢棒材公司轧钢加热炉上应用,在国内首次实现了蓄热式技术燃烧高炉煤气在连续式轧钢加热炉上的应用。此炉作为国内第一座蓄热式轧钢加热炉,尽管在许多方面还不尽人意,但应该说

11、为国内蓄热式燃烧技术应用在冶金行业连续式加热炉开辟了先河;此后,国内有多家公司开展蓄热式燃烧技术的研究和在国内的推广应用,蓄热式燃烧技术逐渐成熟。如北京神雾公司的蓄热式烧嘴加热炉,秦皇岛设计院的蓄热式加热炉等。在蓄热式燃烧技术方面形成了一套较完善的设计思想和方法,蓄热式技术在工业炉上的应用,实现了高产、优质、低耗、少污染和高自动化水平,达到了燃烧工业炉三高一低(高炉温、高烟温、高余热回收和低惰性)的发展方向的要求。从90年代至今我们可以这样认为,蓄热式燃烧技术发展可分为下面几个阶段:(1)简单蓄热式燃烧系统,此系统蓄热室和燃烧器是分开的,换向系统庞大,换向控制系统复杂,可靠性差,换向时间长,热

12、效率不高。(2)从自预热烧嘴发展的蓄热式烧嘴,此烧嘴在国外得到重视并发展到较高水平。如英国的RCB型烧嘴,美国的双蓄热床烧嘴等等。广泛应用于各种火焰炉,并取得了不错的效果。(3)把蓄热室和炉体有机结合一体,并有可靠换向系统的高效蓄热式燃烧技术,北岛公司在90年代初就有研究和应用,而国内首次成功地利用该技术燃用低热值的高炉煤气则是萍乡钢铁有限责任公司1999年建成的棒材轧钢加热炉,取得了显著的经济效益和社会效益。在此之前国内尚无在轧钢连续式加热炉上燃烧纯高炉煤气先例。(4)把蓄热室和烧嘴有机结合一体,并有可靠换向系统的高效蓄热式燃烧技术,北京神雾热能技术有限公司于2000年成功的研制开发出适应国

13、内工业炉窑的蓄热式燃烧器系列,形成了北京神雾蓄热式烧嘴技术体系,国内第一次应用该技术的企业是邯郸钢铁公司中板厂2000年改造的中板加热炉,取得了显著的经济效益和社会效益。此后该公司又开发了多种蓄热式烧嘴,分别应用不同的燃料及行业,为蓄热式燃烧技术在国内各个行业的应用做出了突出的贡献。1.2蓄热燃烧技术和蓄热材料蓄热式燃烧技术,确切地应称为蓄热式换热燃烧技术。这是一项古老的换热方式,十九世纪中期就在平炉和高炉上采用延续至今。轧钢系统的初轧钢锭加热炉以蓄热式均热炉最为节能,并且采用的就是低热值的高炉煤气为燃料。终因其蓄热室占用车间面积大,换向时间长,操作复杂,逐渐被中心换热均热炉和上部单侧烧嘴均热

14、炉所取代。此后,蓄热式换热技术远离了轧钢系统的加热炉。蓄热式换热技术,属不稳态传热,利用耐火材料作载体,交替地被废气热量加热。再将蓄热体蓄存的热量加热空气或煤气,使空气和煤气获得高温预热,达到废热回收的效能。由于蓄热体是周期性地加热、放热,为了保证炉膛加热的连续性,蓄热体必须成对设置。同时,要有换向装置完成蓄热体交替加热、放热。到了二十世纪八十年代,解决了蓄热体的小型化和换向时间缩短到以分秒计,才使这项古老的换热技术得以在轧钢系统的连续式加热炉(含步进式加热炉)上重现废热回收的优势,即将空、煤气双预热到1000左右,排出废气温度在150以下,使废热回收率达到极限值。并且,出现研究高温空气燃烧理

15、论与实践的新领域。1.3 蓄热体材质的选择蓄热体材料的选择,应根据窑炉的工况条件,烟气的温度、腐蚀性及所含固体粉尘的性质和含量等而定。根据目前工业窑炉的情况,可作蓄热体的材料主要有陶瓷和金属两大类。随着工业窑炉使用温度的提高,其烟气温度也随之升高。由于陶瓷材料耐高温,抗氧化,耐化学腐蚀,所以目前大多选用陶瓷材料,如Si3N4材料、各种SiC 材料以及刚玉质、莫来石质、锆英石质和堇青石质材料等。这些材料的典型性能指标见表1。表1 陶瓷蓄热体材料的典型性能Si3N4的高温性能很好,特别是在非氧化气氛下使用效果最好,但由于其价格昂贵,目前推广应用受到很大限制。刚玉因其抗热震性差和价格较贵,也不被看好。大量应用试验表明,堇青石基陶瓷蓄热体具有抗热震性好和价格低廉等优点,但是高温(1250 ) 烟气(尤其是含钠等碱金属蒸气的烟气和含SO2等酸性气体的烟气) 对堇青石质陶瓷蓄热体的腐蚀性特强,使堇青石蓄热体发生熔融、粘结和挥发,从而阻塞气流,最后使熔融液被吹跑。莫来石的密度和比热容较大,价格较便宜,在换热器中有一定的应用市场。与其他材料相比,各种SiC材料都具有很高的热导率,在高温下具有很高的强度和很好的抗侵蚀性及抗氧化性,并具

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号