北航惯性导航综合实验五实验报告.doc

上传人:灯火****19 文档编号:137994602 上传时间:2020-07-13 格式:DOC 页数:18 大小:204.50KB
返回 下载 相关 举报
北航惯性导航综合实验五实验报告.doc_第1页
第1页 / 共18页
北航惯性导航综合实验五实验报告.doc_第2页
第2页 / 共18页
北航惯性导航综合实验五实验报告.doc_第3页
第3页 / 共18页
北航惯性导航综合实验五实验报告.doc_第4页
第4页 / 共18页
北航惯性导航综合实验五实验报告.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《北航惯性导航综合实验五实验报告.doc》由会员分享,可在线阅读,更多相关《北航惯性导航综合实验五实验报告.doc(18页珍藏版)》请在金锄头文库上搜索。

1、惯性导航技术综合实验实验五 惯性基组合导航及应用技术实验 惯性/卫星组合导航系统车载实验一、 实验目的掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; 掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理;掌握捷联惯导 /GPS组合导航系统静态性能;掌握动态情况下捷联惯导 /GPS组合导航系统的性能。二、实验内容复习卡尔曼滤波的基本原理(参考卡尔曼滤波与组合导航原理第二、五章); 复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的惯性导航原理第七章);三、实验系统组成捷联惯导/GPS组合导航实验系统一套; 监控计算机一台。差分 GPS接收机一套;实验车一辆;车载大理石平

2、台;车载电源系统。四、实验内容1) 实验准备 将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; 将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算机、GPS接收机与导航计算机、GPS天线与GPS接收机、GPS接收机与GPS电池之间的连接线正确连接; 打开GPS接收机电源,确认可以接收到4颗以上卫星; 打开电源,启动实验系统。2) 捷联惯导/GPS组合导航实验 进入捷联惯导初始对准状态,记录IMU的原始输出,注意5分钟内严禁移动实验车和IMU; 实验系统经过5分钟初始对准之后,进入导航状态; 移动实验车,按设计实验路线行驶; 利用监控计算机中的导航软件进行导

3、航解算,并显示导航结果。五、 实验结果及分析(一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。1、一分钟惯导位置误差理论推导:短时段内(t5min),忽略地球自转,运动轨迹近似为平面,此时的位置误差分析可简化为:(1) 加速度计零偏引起的位置误差:m(2) 失准角引起的误差:m(3) 陀螺漂移引起的误差:m可得1min后的位置误差值2、一分钟惯导实验数据验证结果:(1)纯惯导解算1min的位置及位置误差图:(2)纯惯导解算1min的速度及速度误差图:实验结果分析:纯惯导解算短时间内精度很高,1min的惯导解算的北向最大位移误差-2.668m,东向最大位移误差-8.2

4、31m,可见实验数据所得位置误差与理论推导的位置误差在同一数量级,结果不完全相同是因为理论推导时做了大量简化,而且实验时视GPS为真实值也会带来误差;另外,可见1min内纯惯导解算的东向速度最大误差-0.2754m/s,北向速度最大误差-0.08027m/s。(二) 选取IMU前5分钟数据进行对准实验。将初始对准结果作为初值完成1小时捷联惯导和组合导航解算,对比1小时捷联惯导和组合导航结果。1、5minIMU数据的解析粗对准结果:2、5minIMU数据的Kalman滤波精对准结果:3、一小时IMU/GPS数据的组合导航结果图及估计方差P阵图:4、一小时IMU数据的捷联惯导解算结果与组合滤波、G

5、PS输出对比图:5、结果分析:由滤波结果图可以看出:(1) 由组合后的速度、位置的P阵可以看出滤波之后载体的速度和位置比GPS输出的精度高。(2) 短时间内SINS的精度较高,初始阶段的导航结果基本和GPS、组合导航结果重合,1小时后的捷联惯导解算结果很差,纬度、经度、高度均发散。(3) INS/GPS组合滤波的结果和GPS的输出结果十分近似,因为1小时的导航GPS的精度比SINS导航的精度高很多,Kalman滤波器中GPS信号的权重更大。(4) 总体看来,SINS/GPS组合滤波的结果优于单独用SINS或GPS导航的结果,起到了协调、超越、冗余的作用,使导航系统更可靠。六、 SINS/GPS

6、组合导航程序%INS/GPS组合导航跑车1h实验%该程序为15维状态量,6维观测量的kalman滤波程序,惯性/卫星组合松耦合的数学模型clearclcclose all%初始量定义wie = 0.000072921151467; Re= 6378135.072;g = 9.7803267714;e = 1.0 / 298.25;T = 0.01; %IMU频率100hz,此程序中GPS频率100hzdatanumber = 360000; %数据时间3600s a = load(imu_1h.dat);w = a(:,3:5)*pi/180/3600; %陀螺仪输出的角速率信息单位由/h化为

7、rad/sf = a(:,6:8); %三轴比力输出,单位ga = load(gps_1h_new.dat); gps_pos = a(:,3:5); %GPS输出的纬度、经度、高度信息gps_pos(:,1:2) = gps_pos(:,1:2)*pi/180; %纬经单位化为弧度gps_v = a(:,6:8); %GPS输出的东北天速度信息%捷联解算及卡尔曼相关v=zeros(datanumber,3); %组合后的速度信息atti = zeros(datanumber,3); %组合后的姿态信息pos = zeros(datanumber,3); %组合后的位置信息gyro=zeros

8、(3,1);acc=zeros(3,1);x_kf = zeros(datanumber,15); p_kf = zeros(datanumber,15);lat = 40.0211142228246*pi/180; %组合导航的初始位置、姿态、速度lon =116.3703629769560*pi/180;height =43.0674;fai = 219.9744642380873*pi/180;theta = -0.895865732956914*pi/180;gama = 0.640089448357591*pi/180;Vx=gps_v(1,1);Vy=gps_v(1,2);Vz=g

9、ps_v(1,3);X_o=zeros(15,1); %X的初值选为0X=zeros(15,1); %Q=diag(50e-6*g)2,(50e-6*g)2,(50e-6*g)2,(0.1*pi/180/3600)2,(0.1*pi/180/3600)2,(0.1*pi/180/3600)2,0,0,0,0,0,0,0,0,0); %随机Q=diag(0.008*pi/180/3600)2,(0.008*pi/180/3600)2,(0.008*pi/180/3600)2,(50e-6*g)2,(50e-6*g)2,(50e-6*g)2,0,0,0,0,0,0,0,0,0);R=diag(0.

10、01)2,(0.01)2,(0.01)2,(0.1)2,(0.1)2,(0.15)2); P=zeros(15);P_k=diag(0.00005*pi/180)2,(0.00005*pi/180)2,(0.00005*pi/180)2,0.000052,0.000052,0.000052,22,22,22,(0.001*pi/180/3600)2,(0.001*pi/180/3600)2,(0.001*pi/180/3600)2,(50e-6*g)2,(50e-6*g)2,(50e-6*g)2); %K=zeros(15,6);Z=zeros(6,1);I=eye(15);Cnb = cos

11、(gama)*cos(fai)-sin(gama)*sin(theta)*sin(fai), cos(gama)*sin(fai)+sin(gama)*sin(theta)*cos(fai), -sin(gama)*cos(theta); -cos(theta)*sin(fai), cos(theta)*cos(fai), sin(theta); sin(gama)*cos(fai)+cos(gama)*sin(theta)*sin(fai), sin(gama)*sin(fai)-cos(gama)*sin(theta)*cos(fai), cos(gama) * cos(theta);q

12、= cos(fai/2)*cos(theta/2)*cos(gama/2) - sin(fai/2)*sin(theta/2)*sin(gama/2); cos(fai/2)*sin(theta/2)*cos(gama/2) - sin(fai/2)*cos(theta/2)*sin(gama/2); cos(fai/2)*cos(theta/2)*sin(gama/2) + sin(fai/2)*sin(theta/2)*cos(gama/2); cos(fai/2)*sin(theta/2)*sin(gama/2) + sin(fai/2)*cos(theta/2)*cos(gama/2)

13、;Cnb_s=Cnb;q_s=q; for i=1:1:datanumber Rmh = Re * (1.0 - 2.0 * e + 3.0 * e * sin(lat) * sin(lat) + height; Rnh = Re * (1.0 + e * sin(lat) * sin(lat) + height; Wien = 0; wie * cos(lat); wie * sin(lat); Wenn = -Vy / Rmh; Vx / Rnh; Vx * tan(lat) / Rnh; Winn = Wien + Wenn; Winb = Cnb * Winn; for j=1:3 gyro(j,1) = w(j,i); acc(j,1) = f(j,i)*g; %加速度信息,单位化为m/s2 end angle = (gyro - Winb) * T; fn = Cnb* acc; difVx = fn(1) + (2.0 * wie * sin(lat) + Vx * tan(lat) / Rnh) * Vy; difVy = fn(2) - (2.0 * wie * sin(lat) + Vx * tan(lat) / Rnh) * Vx; difVz = fn(3) + (2.0 * wie *

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号