同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc

上传人:灯火****19 文档编号:137987454 上传时间:2020-07-13 格式:DOC 页数:46 大小:1.49MB
返回 下载 相关 举报
同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc_第1页
第1页 / 共46页
同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc_第2页
第2页 / 共46页
同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc_第3页
第3页 / 共46页
同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc_第4页
第4页 / 共46页
同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

《同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc》由会员分享,可在线阅读,更多相关《同济第六版《高等数学》教案WORD版-第11章 无穷级数.doc(46页珍藏版)》请在金锄头文库上搜索。

1、第十一章 无穷级数教学目的: 1理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。2掌握几何级数与P级数的收敛与发散的条件。3掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。4掌握交错级数的莱布尼茨判别法。5了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。6了解函数项级数的收敛域及和函数的概念。7理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。8了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。9了解函数展

2、开为泰勒级数的充分必要条件。10掌握,和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在-l,l上的函数展开为傅里叶级数,会将定义在0,l上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。教学重点 : 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,和的麦克劳林展开式; 6、傅里叶级数。教学难点:1、 比较判别法的极限形式;2、 莱布尼茨判别法;3、 任意项级数的绝对收敛

3、与条件收敛;4、 函数项级数的收敛域及和函数;5、 泰勒级数;6、 傅里叶级数的狄利克雷定理。11. 1 常数项级数的概念和性质 一、常数项级数的概念 常数项级数: 给定一个数列 u1, u2, u3, , un, , 则由这数列构成的表达式 u1 + u2 + u3 + + un + 叫做常数项)无穷级数, 简称常数项)级数, 记为, 即 , 其中第n项u n 叫做级数的一般项. 级数的部分和: 作级数的前n项和 称为级数的部分和. 级数敛散性定义: 如果级数的部分和数列有极限s, 即, 则称无穷级数收敛, 这时极限s叫做这级数的和, 并写成 ; 如果没有极限, 则称无穷级数发散. 余项:

4、当级数收敛时, 其部分和s n是级数的和s的近似值, 它们之间的差值 rn=s-sn=un+1+un+2+ 叫做级数的余项. 例1 讨论等比级数(几何级数) 的敛散性, 其中a0, q叫做级数的公比. 例1 讨论等比级数(a0)的敛散性. 解 如果q1, 则部分和 . 当|q|1时, 因为, 所以此时级数发散. 如果|q|=1, 则当q=1时, sn =na, 因此级数发散; 当q=-1时, 级数成为 a-a+a-a+ , 时|q|=1时, 因为sn 随着n为奇数或偶数而等于a或零, 所以sn的极限不存在, 从而这时级数也发散. 综上所述, 如果|q|1, 则级数收敛, 其和为; 如果|q|1

5、, 则级数发散. 仅当|q|0, nN). 若收敛, 则收敛; 若发散, 则发散. 设Sun和Svn都是正项级数, 且unkvn(k0, nN). 若级数Svn收敛, 则级数Sun收敛; 反之, 若级数Sun发散, 则级数Svn发散. 证 设级数收敛于和s, 则级数的部分和 sn=u1+u2+ +unv1+ v2+ +vns (n=1, 2, ), 即部分和数列sn有界, 由定理1知级数收敛. 反之, 设级数发散, 则级数必发散. 因为若级数收敛, 由上已证明的结论, 将有级数也收敛, 与假设矛盾. 证 仅就unvn (n=1, 2, )情形证明. 设级数Svn收敛, 其和为s, 则级数Sun

6、的部分和 sn=u1+ u2+ + unv1+v2+ +vns (n=1, 2, ), 即部分和数列sn有界. 因此级数Sun收敛. 反之, 设级数Sun发散, 则级数Svn必发散. 因为若级数Svn收敛, 由上已证明的结论, 级数Sun也收敛, 与假设矛盾. 推论 设和都是正项级数, 如果级数收敛, 且存在自然数N, 使当nN时有unkvn(k0)成立, 则级数收敛; 如果级数发散, 且当nN时有unkvn(k0)成立, 则级数发散. 例1 讨论p-级数 的收敛性, 其中常数p0. 例1 讨论p-级数的收敛性. 解 设p1. 这时, 而调和级数发散, 由比较审敛法知, 当p1时级数发散. 设

7、p1. 此时有 (n=2, 3, ). 对于级数, 其部分和 . 因为. 所以级数收敛. 从而根据比较审敛法的推论1可知, 级数当p1时收敛. 综上所述, p-级数当p1时收敛, 当p1时发散. 解 当p1时, , 而调和级数发散, 由比较审敛法知, 当p1时级数发散. 当p1时, (n=2, 3, ). 而级数是收敛的, 根据比较审敛法的推论可知, 级数当p1时收敛.提示: 级数的部分和为 . 因为, 所以级数收敛. p-级数的收敛性: p-级数当p1时收敛, 当p1时发散. 例2 证明级数是发散的. 证 因为, 而级数是发散的, 根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的

8、极限形式) 设和都是正项级数, 如果(0l+), 则级数和级数同时收敛或同时发散. 定理3(比较审敛法的极限形式) 设和都是正项级数, (1)如果(0l+), 且级数收敛, 则级数收敛; (2)如果, 且级数发散, 则级数发散. 定理3(比较审敛法的极限形式) 设Sun和Svn都是正项级数, (1)如果lim(un/vn)=l(0l+), 且Svn收敛, 则Sun收敛; (2)如果lim(un/vn)=l(0N时, 有不等式 , 即, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数的收敛性. 解 因为, 而级数发散, 根据比较审敛法的极限形式, 级数发散. 例4 判别级数的收敛性. 解 因为, 而级数收敛, 根据比较审敛法的极限形式, 级数收敛. 定理4(比值审敛法, 达朗贝尔判别法) 若正项级数的后项与前项之比值的极限等于r: , 则当r1(或)时级数发散; 当r =1时级数可能收敛也可能发散. 定理4(比值审敛法, 达朗贝尔判别法) 若正项级数满足, 则当r1(或)时级数发散. 当r =1时级数可能收敛也可能发散. 定理4(比值审敛法, 达朗贝尔判别法)设为正项级数, 如果, 则当r1(或)时级数发散; 当r =1时级数可能收

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学研究

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号