2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)

上传人:刚** 文档编号:137738048 上传时间:2020-07-11 格式:DOC 页数:37 大小:2.73MB
返回 下载 相关 举报
2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)_第1页
第1页 / 共37页
2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)_第2页
第2页 / 共37页
2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)_第3页
第3页 / 共37页
2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)_第4页
第4页 / 共37页
2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)》由会员分享,可在线阅读,更多相关《2020届新高考高中数学核心知识点专题23.1 圆锥曲线的综合问题(精讲精析篇)(解析版)(37页珍藏版)》请在金锄头文库上搜索。

1、专题23.1 圆锥曲线的综合问题(精讲精析篇)提纲挈领点点突破热门考点01 圆锥曲线中的定点问题圆锥曲线中定点问题的求解方法圆锥曲线中的定点问题往往与圆锥曲线中的“常数”有关,如椭圆的长、短轴,双曲线的虚、实轴,抛物线的焦参数等解答这类题要大胆设参,运算推理,到最后参数必清【典例1】(2019年高考北京卷理)已知抛物线C:x2=2py经过点(2,1)(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B求证:以AB为直径的圆经过y轴上的两个定点【答案】(1)抛物线的方程为,准线方程为;(2)见

2、解析.【解析】(1)由抛物线经过点,得.所以抛物线的方程为,其准线方程为.(2)抛物线的焦点为.设直线的方程为.由得.设,则.直线的方程为.令,得点A的横坐标.同理得点B的横坐标.设点,则,.令,即,则或.综上,以AB为直径的圆经过y轴上的定点和.【典例2】(2019安徽高三月考(理)已知点A,B是抛物线上关于轴对称的两点,点E是抛物线C的准线与x轴的交点.(1)若是面积为4的直角三角形,求抛物线C的方程;(2)若直线BE与抛物线C交于另一点D,证明:直线AD过定点.【答案】(1) ;(2) 证明见解析【解析】(1)由题意,是等腰直角三角形,且不妨设点A位于第一象限,则直线EA的方程为,联立方

3、程,解得所以点, ,解得,故抛物线C的方程为 (2)(方法一)设,则直线EB的方程为联立方程,消去,得关于的方程 该方程有一个根,两根之积为,则另一个根为,所以点D的坐标为直线AD的斜率为 所以AD的方程为化简得所以直线AD过定点 (方法二)设,直线BE的方程为,联立方程,消去x,得关于x的方程,所以 则直线AD的方程为 化简得所以直线AD过定点【规律方法】圆锥曲线中定点问题的两种解法热门考点02 圆锥曲线中的定值问题圆锥曲线中定值的求解方法圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长、短轴,双曲线的虚、实轴,抛物线的焦参数等定值问题的求解与证明类似,在求定值之前,已经

4、知道定值的结果(题中未告知,可用特殊值探路求之),解答这类题要大胆设参,运算推理,到最后参数必清,定值显现【典例3】(2019湖北高三月考)已知椭圆:的左、右焦点,是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆恰好经过椭圆的焦点,且的周长为(1)求椭圆的方程;(2)设直线是圆:上动点处的切线,与椭圆交与不同的两点,证明:的大小为定值【答案】(1);(2)证明见解析.【解析】(1)因为以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,所以可得,又因为的周长为,可得,所以,可得,所求椭圆的方程为.(2)证明:直线的方程为,且,记以,联立方程消去得,从而,为定值.【点睛】(1)椭圆的

5、焦点三角形的周长为定值:;(2)圆,圆上一点处的切线方程为:.【典例4】(2020浙江高三月考)已知椭圆()的焦距为,且过点()求椭圆的方程;()若点,设为椭圆上位于第三象限内一动点,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值,并求出该定值【答案】();()四边形的面积为定值2;证明见解析.【解析】()由题意,且,求得,所以所以椭圆的方程为;()设(,),则又,所以直线的方程为令,得,从而直线的方程为令,得,从而所以四边形的面积所以四边形的面积为定值2【总结提升】1.圆锥曲线中的定值问题的常见类型及解题策略2.两种解题思路从特殊入手,求出定值,再证明这个值与变量无关;引进变量法:

6、其解题流程为:热门考点03 圆锥曲线中的最值与范围问题与圆锥曲线相关的最值、范围问题综合性较强,解决的方法:一是由题目中的限制条件求范围,如直线与圆锥曲线的位置关系中的范围,方程中变量的范围,角度的大小等;二是将要讨论的几何量如长度、面积等用参数表示出来,再对表达式进行讨论,应用不等式、三角函数等知识求最值,在解题过程中注意向量、不等式的应用【典例5】(2019年高考全国卷理21)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,

7、连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.【答案】(1)见解析;(2).【解析】(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点(2)(i)设直线PQ的斜率为k,则其方程为由得记,则于是直线的斜率为,方程为由得设,则和是方程的解,故,由此得从而直线的斜率为所以,即是直角三角形(ii)由(i)得,所以PQG的面积设t=k+,则由k0得t2,当且仅当k=1时取等号因为在2,+)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为因此,PQG面积的最大值为【典例6】(2019四川高三月考(理)已知抛物线,过点的直线与抛物线交于

8、两点,又过两点分别作抛物线的切线,两条切线交于点.(1)证明:直线的斜率之积为定值;(2)求面积的最小值【答案】(1)见解析;(2)【解析】(1)证明:由题意设 的方程为 ,联立 ,得 因为 ,所以设 ,则 设直线 的斜率分别为 ,对 求导得 ,所以 ,所以,(定值)(2)解:由(1)可得直线 的方程为 直线 的方程为 联立,得点 的坐标为, 由(1)得 ,所以 .于是 ,点 到直线 的距离, 所以 ,当,即时,的面积取得最小值【典例7】(2018湖南宁乡一中高三月考)已知椭圆的左,右焦点分别为,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(I)求椭圆的方程;()如图,

9、若斜率为的直线与轴,椭圆顺次交于点在椭圆左顶点的左侧)且,求证:直线过定点;并求出斜率的取值范围.【答案】(I);()证明见解析,.【解析】()解:椭圆的左,右焦点分别为,椭圆的离心率为,即有,即,以原点为圆心,椭圆的短半轴长为半径的圆方程为,直线与圆相切,则有,即有,则椭圆C的方程为;()证明:设,由,可得直线和关于x轴对称即有,即,即有,设直线,代入椭圆方程,可得,判别式,即为,代入可得,将代入,化简可得,则直线的方程为,即即有直线恒过定点将代入,可得,解得或则直线的斜率的取值范围是【总结提升】1处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方

10、法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.2.解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围(4)利用已知的不等关系构造不等式,从而求出参数的取值范围(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值

11、域,从而确定参数的取值范围热门考点04 圆锥曲线中的探索性问题探索性问题的求解方法:先假设成立,在假设成立的前提下求出与已知、定理或公理相同的结论,说明结论成立,否则说明结论不成立处理这类问题,一般要先对结论做出肯定的假设,然后由此假设出发,结合已知条件进行推理论证若推出相符的结论,则存在性随之解决;若推出矛盾,则否定了存在性;若证明某结论不存在,也可以采用反证法.【典例8】(2019全国高考真题(文)已知点A,B关于坐标原点O对称,AB =4,M过点A,B且与直线x+2=0相切(1)若A在直线x+y=0上,求M的半径(2)是否存在定点P,使得当A运动时,MAMP为定值?并说明理由【答案】(1

12、)或;(2)见解析.【解析】(1)在直线上 设,则又 ,解得:过点, 圆心必在直线上设,圆的半径为与相切 又,即,解得:或当时,;当时,的半径为:或(2)存在定点,使得说明如下:,关于原点对称且直线必为过原点的直线,且当直线斜率存在时,设方程为:则的圆心必在直线上设,的半径为与相切 又,整理可得:即点轨迹方程为:,准线方程为:,焦点,即抛物线上点到的距离 当与重合,即点坐标为时,当直线斜率不存在时,则直线方程为:在轴上,设,解得:,即若,则综上所述,存在定点,使得为定值.【例9】(2018届广东省东莞市考前冲刺)在直角坐标系中,已知抛物线的焦点为,若椭圆:经过点,抛物线和椭圆有公共点,且.(1

13、)求抛物线和椭圆的方程; (2)是否存在正数,对于经过点且与抛物线有两个交点的任意一条直线,都有焦点在以为直径的圆内?若存在,求出的取值范围;若不存在,请说明理由.【答案】(1),(2)【解析】(1)因为抛物线经过点,且.所以,解得,所以抛物线,焦点,由题意知解得所以椭圆:故抛物线的方程为,椭圆的方程为.(2)假设存在正数适合题意,由题意知直线的斜率一定存在,设直线的方程为由消去,整理得因为直线与抛物线有两个交点且,所以设,则所以因为,所以由题意知恒成立,所以恒成立因为,所以,解得又因为,所以故存在正数适合题意,此时d 取值范围为.【总结提升】解析几何中存在性问题的求解方法:1通常采用“肯定顺

14、推法”,将不确定性问题明朗化,其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于特定参数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则(点、直线、曲线或参数)不存在2反证法与验证法也是求解存在性问题的常用方法热门考点05 直线、圆及圆锥曲线的交汇问题【典例10】(2019年高考江苏卷)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(1、0),F2(1,0)过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1已知DF1=(1)求椭圆C的标准方程;(2)求点E的坐标【答案】(1);(2).【解析】(1)设椭圆C的焦距为2c.因为F1(1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,AF2x轴,所以DF2=,因此2a=DF1+DF2=4,从而a=2.由b2=a2c2,得b2=3.因此

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号