高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理

上传人:1516****951 文档编号:137207247 上传时间:2020-07-06 格式:DOC 页数:23 大小:827.50KB
返回 下载 相关 举报
高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理_第1页
第1页 / 共23页
高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理_第2页
第2页 / 共23页
高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理_第3页
第3页 / 共23页
高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理_第4页
第4页 / 共23页
高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理》由会员分享,可在线阅读,更多相关《高考数学大二轮总复习与增分策略专题五立体几何与空间向量第3讲立体几何中的向量方法练习理(23页珍藏版)》请在金锄头文库上搜索。

1、第3讲立体几何中的向量方法1(2014课标全国)直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A. B. C. D.答案C解析方法一由于BCA90,三棱柱为直三棱柱,且BCCACC1.建立如图(1)所示空间直角坐标系设正方体棱长为2,则可得A(0,0,0),B(2,2,0),M(1,1,2),N(0,1,2),(1,1,2)(2,2,0)(1,1,2),(0,1,2)cos,.方法二如图(2),取BC的中点D,连接MN,ND,AD,由于MN綊B1C1綊BD,因此有ND綊BM,则ND与NA所成的角即为异面直线BM与

2、AN所成的角设BC2,则BMND,AN,AD,因此cosAND.2(2016课标全国乙)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF2FD,AFD90,且二面角DAFE与二面角CBEF都是60.(1)证明:平面ABEFEFDC;(2)求二面角EBCA的余弦值(1)证明由已知可得AFDF,AFFE,所以AF平面EFDC,又AF平面ABEF,故平面ABEF平面EFDC.(2)解过点D作DGEF,垂足为G,由(1)知DG平面ABEF.以点G为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知DFE为二面角DAFE的平面角,故DF

3、E60,则DF2,DG,可得A(1,4,0),B(3,4,0),E(3,0,0),D(0,0,)由已知,ABEF,所以AB平面EFDC,又平面ABCD平面EFDCCD,故ABCD,CDEF,由BEAF,可得BE平面EFDC,所以CEF为二面角CBEF的平面角,CEF60,从而可得C(2,0,)所以(1,0,),(0,4,0),(3,4,),(4,0,0)设n(x,y,z)是平面BCE的法向量,则即所以可取n(3,0,)设m是平面ABCD的法向量,则同理可取m(0,4),则cosn,m.故二面角EBCA的余弦值为.以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二

4、面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.热点一利用向量证明平行与垂直设直线l的方向向量为a(a1,b1,c1),平面,的法向量分别为(a2,b2,c2),v(a3,b3,c3)则有:(1)线面平行laa0a1a2b1b2c1c20.(2)线面垂直laaka1ka2,b1kb2,c1kc2.(3)面面平行vva2a3,b2b3,c2c3.(4)面面垂直vv0a2a3b2b3c2c30.例1如图,在直三棱柱ADEBCF中,面ABFE和面ABCD都是正方形且互相垂直,点M为AB的中点,点O为DF的中点运用向量方法证明:(1)OM平面BCF;(2)平面MDF

5、平面EFCD.证明方法一由题意,得AB,AD,AE两两垂直,以点A为原点建立如图所示的空间直角坐标系设正方形边长为1,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),F(1,0,1),M,O.(1),(1,0,0),0, .棱柱ADEBCF是直三棱柱,AB平面BCF,是平面BCF的一个法向量,且OM平面BCF,OM平面BCF.(2)设平面MDF与平面EFCD的一个法向量分别为n1(x1,y1,z1),n2(x2,y2,z2)(1,1,1),(1,0,0),(0,1,1),由得令x11,则n1.同理可得n2(0,1,1)n1n20,平面MDF平面EFCD.方法二(1)(

6、)().向量与向量,共面,又OM平面BCF,OM平面BCF.(2)由题意知,BF,BC,BA两两垂直,0,()220.OMCD,OMFC,又CDFCC,OM平面EFCD.又OM平面MDF,平面MDF平面EFCD.思维升华用向量知识证明立体几何问题,仍然离不开立体几何中的定理如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线ab,只需证明向量ab(R)即可若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外跟踪演练1如图,在底面是矩形的四棱锥PABCD中,PA底面ABCD,点E,F分别是PC,PD的中点,PAAB1,B

7、C2.(1)求证:EF平面PAB;(2)求证:平面PAD平面PDC.证明(1)以点A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),点E,F分别是PC,PD的中点,E,F,(1,0,0),即EFAB,又AB平面PAB,EF平面PAB,EF平面PAB.(2)由(1)可知(1,0,1),(0,2,1),(0,0,1),(0,2,0),(1,0,0),(0,0,1)(1,0,0)0,(0,2,0)(1,0,0)0,即APDC,ADDC.又APADA,DC平面P

8、AD.DC平面PDC,平面PAD平面PDC.热点二利用空间向量求空间角设直线l,m的方向向量分别为a(a1,b1,c1),b(a2,b2,c2)平面,的法向量分别为(a3,b3,c3),v(a4,b4,c4)(以下相同)(1)线线夹角设l,m的夹角为(0),则cos .(2)线面夹角设直线l与平面的夹角为(0),则sin |cosa,|.(3)面面夹角设平面、的夹角为(0),则|cos |cos,v|.例2(2015江苏)如图,在四棱锥PABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABCBAD,PAAD2,ABBC1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点

9、Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长解以,为正交基底建立如图所示的空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(1)因为AD平面PAB,所以是平面PAB的一个法向量,(0,2,0)因为(1,1,2),(0,2,2)设平面PCD的法向量为m(x,y,z),则m0,m0,即令y1,解得z1,x1.所以m(1,1,1)是平面PCD的一个法向量从而cos,m,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为(1,0,2),设(,0,2)(01),又(0,1,0),则(,1,2),又(0,2,2),

10、从而cos,.设12t,t1,3,则cos2,.当且仅当t,即时,|cos,|的最大值为.因为ycos x在上是减函数,此时直线CQ与DP所成角取得最小值又因为BP,所以BQBP.思维升华(1)运用空间向量坐标运算求空间角的一般步骤:建立恰当的空间直角坐标系;求出相关点的坐标;写出向量坐标;结合公式进行论证、计算;转化为几何结论(2)求空间角注意:两条异面直线所成的角不一定是直线的方向向量的夹角,即cos |cos |.两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化跟踪演练2如

11、图,在直三棱柱ABCA1B1C1中,底面ABC是直角三角形,ABAC1,AA12,点P是棱BB1上一点,满足 (01)(1)若,求直线PC与平面A1BC所成角的正弦值;(2)若二面角PA1CB的正弦值为,求的值解以点A为坐标原点O,分别以AB,AC,AA1所在直线为x轴,y轴,z轴,建立空间直角坐标系Oxyz.因为ABAC1,AA12,则A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,2),B1(1,0,2),P(1,0,2)(1)由得,(1,0,2),(0,1,2),设平面A1BC的法向量为n1(x1,y1,z1),由得不妨取z11,则x1y12,从而平面A1BC的一个法

12、向量为n1(2,2,1)设直线PC与平面A1BC所成的角为,则sin |cos,n1|,所以直线PC与平面A1BC所成的角的正弦值为.(2)设平面PA1C的法向量为n2(x2,y2,z2),(1,0,22),由得不妨取z21,则x222,y22,所以平面PA1C的法向量为n2(22,2,1)则cosn1,n2,又因为二面角PA1CB的正弦值为,所以,化简得2890,解得1或9(舍去),故的值为1.热点三利用空间向量求解探索性问题存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立解决这类问题的基本策略是先假设题中的数学对象存在(或结论成

13、立)或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论例3如图所示,四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MDNB1,E为BC的中点(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由解(1)由题意,易得DMDA,DMDC,DADC.如图所示,以点D为坐标原点,DA,DC,DM所在直线分别为x轴,y轴,z轴,建立空间直角坐标系则D(0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),B(1,1,0),N(1,1,1),E(,1,0),所以(,0,1),(1,0,1)设异面直线NE与AM所成角为,则cos |cos,|.所以异面直线NE与AM所成角的余弦值为.(2)假设在线段AN上存在点S,使得ES平面AMN,连接AE.因为(0,1,1),可设

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号