《光合作用影响因素(精选)》-精选课件(公开PPT)

上传人:zhuma****mei1 文档编号:136373964 上传时间:2020-06-28 格式:PPT 页数:52 大小:2.10MB
返回 下载 相关 举报
《光合作用影响因素(精选)》-精选课件(公开PPT)_第1页
第1页 / 共52页
《光合作用影响因素(精选)》-精选课件(公开PPT)_第2页
第2页 / 共52页
《光合作用影响因素(精选)》-精选课件(公开PPT)_第3页
第3页 / 共52页
《光合作用影响因素(精选)》-精选课件(公开PPT)_第4页
第4页 / 共52页
《光合作用影响因素(精选)》-精选课件(公开PPT)_第5页
第5页 / 共52页
点击查看更多>>
资源描述

《《光合作用影响因素(精选)》-精选课件(公开PPT)》由会员分享,可在线阅读,更多相关《《光合作用影响因素(精选)》-精选课件(公开PPT)(52页珍藏版)》请在金锄头文库上搜索。

1、第六节 影响光合作用的因素,一、光合速率及表示单位 光合速率通常是指单位时间单位叶面积的CO2吸收量或O2的释放量,也可用单位时间单位叶面积上的干物质积累量来表示。,表观光合速率或净光合速率: 通常测定光合速率时没有把呼吸作用(光、暗呼吸)以及呼吸释放的CO2被光合作用再固定等因素考虑在内,所测结果; 总光合速率或真光合速率: 表观光合速率加上光、暗呼吸速率,光合速率测定方法,CO+ HO 光 叶绿体 (CHO) O CO2吸收量 干物质积累量 O2释放量 红外线CO2气体分析仪 改良半叶法 氧电极法 mol CO2m-2s-1 mgDWdm-2h-1 molO2m-2s-1 1molm-2s

2、-1=1.58mgdm-2h-1,测定光合速率的方法,红外线CO2气体分析仪,LI-6200光合作用分析系统,LCA-4光合作用分析系统,二、内部因素,(一)叶的发育和结构 1.叶龄 新长出的嫩叶,光合速率很低。,光合速率随叶龄增长出现“低高低”的规律,但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,当叶片长至面积和厚度最大时,光合速率通常也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降。,2.叶的结构,叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一方面受遗传

3、因素控制,另一方面还受环境影响。 C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。,栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。,棉花叶片的结构,叶的横断面,与叶面平行切片,上表皮,栅栏细胞,海绵组织细胞,(二)光合产物的输出,光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。 例如,摘去花、果、顶芽等,邻近叶的光合速率?; 摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率? 对苹果等枝条环割,使环割上方枝条上的叶片光合速率?,光合产物积累到一定的水平

4、后会影响光合速率的原因: (1)反馈抑制。 (2)淀粉粒的影响。,三、外部因素,(一)光照 直接制约着光合速率的高低 光能,叶绿素、叶绿体以及正常叶片形成,光合酶的活性与气孔的开度等。 光照因素中有光强、光质与光照时间,拍摄气孔开启的装置和实例,光诱导的气孔开启(每隔5分钟拍1张),1.光强,图26是光强-光合速率关系的模式图。 暗中叶片不进行光合作用,只有呼吸作用释放CO2 (图26中的OD为呼吸速率)。 光补偿点 光饱和点,图26 光强-光合曲线图解 A.比例阶段; B.比例向饱和过渡阶段; C.饱和阶段,(1)光强-光合曲线,在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线

5、A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。以后的阶段称饱和阶段(直线C)。 比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2扩散和固定速率是主要限制因素。,图26 光强-光合曲线图解 A.比例阶段; B.比例向饱和过渡阶段; C.饱和阶段,不同植物的光强-光合曲线不同,光补偿点和光饱和点也有很大的差异。 光补偿点高的植物一般光饱和点也高, 草本植物的光补偿点与光饱和点通常要高于木本植物; 阳生植物的光补偿点与光饱和点要高于阴生植物; C4植物的光饱和点要高于C3植物。,图27 不同植物的光强光合曲线,(2)强光伤害光抑制

6、,当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制。 晴天中午的光强常超过植物的光饱和点,很多C植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。 当强光与高温、低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。 因此光抑制产生的原因及其防御系统引起了人们的重视。,光抑制机理,一般认为光抑制主要发生在PS。按其发生的原初部位可分为: 受体侧光抑制 常起始于还原型QA的积累。还原型QA的积累促使三线态P680(P680T)的形成,而P680T可以与氧作用(P680T +O2P68

7、0 + 1O2)形成单线态氧(1O2); 供体侧光抑制 起始于水氧化受阻。由于放氧复合体不能很快把电子传递给反应中心,从而延长了氧化型P680(P680+)的存在时间。 680+和1O2都是强氧化剂,如不及时消除,它们都可以氧化破坏附近的叶绿素和D1蛋白,从而使光合器官损伤,光合活性下降。,保护机理,植物有多种保护防御机理,用以避免或减少光抑制的破坏。如: (1)通过叶片运动,叶绿体运动或叶表面覆盖蜡质层、积累盐或着生毛等来减少对光的吸收; (2)通过增加光合电子传递和光合关键酶的含量及活化程度,提高光合能力等来增加对光能的利用; (3)加强非光合的耗能代谢过程,如光呼吸、Mehler反应等;

8、 (4)加强热耗散过程,如蒸腾作用; (5)增加活性氧的清除系统, 如SOD、谷胱甘肽还原酶等的量和活性; (6)加强PS的修复循环等。,在作物生产上,保证作物生长良好,使叶片的光合速率维持较高的水平,加强对光能的利用,这是减轻光抑制的前提。 同时采取各种措施,尽量避免强光下多种胁迫的同时发生,这对减轻或避免光抑制损失也是很重要的。 另外,强光下在作物上方用塑料薄膜遮阳网或防虫网等遮光,能有效防止光抑制的发生,这在蔬菜 花卉栽培中已普遍应用。,光抑制引起的破坏与自身的修复过程是同时发生的,两个相反过程的相对速率决定光抑制程度和对光抑制的忍耐性。 光合机构的修复需要弱光和合适的温度,以及维持适度

9、的光合速率,并涉及到一些物质如D1等蛋白的合成。 如果植物连续在强光和高温下生长,那么光抑制对光合器的损伤就难以修复了。,2.光质,在太阳幅射中,只有可见光部分才能被光合作用利用。 用不同波长的可见光照射植物叶片,测定到的光合速率不一样。,在600680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。,图28 不同光波下光合速率 实线为26种草本植物的平均值; 虚线为7种 木本植物的平均值。,放氧速率,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合,水层同样改变光强和光质。 水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更

10、弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。 所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适应的一种表现。,在自然条件下,植物或多或少会受到不同波长的光线照射。 如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。 树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低,“大树底下无丰草”就是这个道理。,大树底下无丰草?,绿藻分布于海水的表层, 红藻则分布在海水的深层?,3.光照时间,对

11、放置于暗中一段时间的材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升并趋与稳定。 从照光开始至光合速率达到稳定水平的这段时间,称为“光合滞后期” 或称光合诱导期。 一般整体叶片的光合滞后期约3060min,而排除气孔影响的去表皮叶片,细胞、原生质体等光合组织的滞后期约10min。,将植物从弱光下移至强光下,也有类似情况出现。另外,植物的光呼吸也有滞后现象,在光呼吸的滞后期中光呼吸速率与光合速率会按比例上升(图29)。,C3植物与C4植物的光合、光呼吸以及光呼吸/光合随照光时间的变化 1.表观光合速率 2.C3植物光呼吸速率 3.C4植物光呼吸速率 4.C3

12、植物光呼吸/光合比值 5.C4植物光呼吸/光合比值,产生滞后期的原因 光对酶活性的诱导 光合碳循环中间产物的增生需要一个准备过程, 光诱导气孔开启所需较长的时间,其是叶片滞后期延长的主要因素。 由于照光时间的长短对植物叶片的光合速率影响很大,因此在测定光合速率时要让叶片充分预照光。,光照小结,(二)CO2,1.CO2-光合曲线 光下CO2浓度为零时叶片只有光、暗呼吸,释放CO2。图中的OA部分为光下叶片向无CO2气体中的CO2释放速率,通常用它来代表光呼吸速率。 CO2补偿点(图中C点); CO2饱和点。,图 30 叶片光合速率对细胞间隙CO2浓度响应示意图 曲线上四个点对应浓度分别为CO2补

13、偿点(C),空气浓度下细胞间隙的CO2浓度(n),与空气浓度相同的细胞间隙CO2浓度(350lL-1左右)和CO2饱和点(S)。Pm为最大光合速率;CE为比例阶段曲线斜率,代表羧化效率;OA光下叶片向无CO2气体中的释放速率,可代表光呼吸速率。,C4植物的CO2饱和点比C3植物低,在大气CO2浓度下就能达到饱和;而C3植物CO2饱和点不明显,光合速率在较高CO2浓度下还会随浓度上升而提高。C4植物CO2饱和点低的原因,可能与C4植物的气孔对CO2浓度敏感有关,即CO2浓度超过空气水平后,C4植物气孔开度就变小。另外,C4植物PEPC的Km低,对CO2亲和力高,有浓缩CO2机制,这些也是C4植物

14、CO2饱和点低的原因。,C3植物与C4植物CO2光合曲线 可以看出:C4植物的CO2补偿点低,在低CO2浓度下光合速率的增加比C3快,CO2的利用率高;,2.CO2供给,CO2从大气到达羧化酶部位的途径和所遇的阻力可用下式示: 大气 ra 气孔 rs 叶肉细胞间隙 ri 叶肉细胞 rm 叶绿体基质 ra、rs、ri、rm分别为大气、气孔、细胞间隙与原生质的阻力。其中较大的阻力为rs与rm。 CO2从大气至叶肉细胞间隙为气相扩散,而从叶肉细胞间隙到叶绿体基质则为液相扩散,扩散的动力为CO2浓度差。 CO2流通速率(P,可代表光合速率)可用下式表示: P=(Ca-Cc)/r= (Ca-Cc)/ (

15、ra+rs+ri+rm),式中Ca与Cc为大气和叶绿体中CO2浓度. 此式表明光合速率与大气至叶绿体间的 CO2浓度差成正比,与大气至叶绿体间的总阻力成反比 凡能提高浓度差和减少阻力的因素都可促进CO2流通而提高光合速率。,空气中的CO2浓度较低,约为350lL-1(0.035%),分压为3.510-5MPa,而一般C3植物的CO2饱和点为1 0001 500lL-1左右,是空气中的35倍。,在不通风的温室、大棚和光合作用旺盛的作物冠层内的CO2浓度可降至200lL-1左右。由于光合作用对CO2的消耗以及存在CO2扩散阻力,因而叶绿体基质中的CO2浓度很低,接近CO2补偿点。因此,加强通风或设

16、法增施CO2能显著提高作物的光合速率,这对C3植物尤为明显。,(三)温度,光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。 在强光、高CO2浓度时温度对光合速率的影响要比弱光、低CO2浓度时影响大(图32),这是因为在强光和高CO2条件下,温度成了光合作用的主要限制因素。,图32 不同CO2浓度下温度对光合速率的影响 a.在饱和CO2浓度下; b.在大气CO2浓度下,光合作用的温度范围和三基点,产生光合作用热限的原因: 一是由于膜脂与酶蛋白的热变性,使光合器官损伤,叶绿体中的酶钝化; 二是由于高温刺激了光暗呼吸,使表观光合速率迅速下降 昼夜温差对光合净同化率有很大的影响。白天温度高,日光充足,有利于光合作用的进行;夜间温度较低,降低了呼吸消耗,因此,在一定温度范围内,昼夜温差大有利于光合积累。 在农业实践中要注意控制环境温度,避免高温与低温对光合作用的不利影响。 玻璃温室与塑料大棚具有保温与增温效应,能提高光合生产力,这已被普遍

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号