《新北师大七年级数学下第四章三角形家教教案》由会员分享,可在线阅读,更多相关《新北师大七年级数学下第四章三角形家教教案(7页珍藏版)》请在金锄头文库上搜索。
1、第四章 三角形一、三角形及其有关概念 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的_;相邻两边的公共端点叫做三角形的_;相邻两边所组成的角叫做三角形的_,简称三角形的角。2、三角形的表示:三角形用符号“”表示,顶点是A、B、C的三角形记作“_”,读作“_”。3、三角形的三边关系:(1)三角形的两边之和_第三边。(2)三角形的两边之差_第三边。(3)作用:判断三条已知线段能否组成三角形 当已知两边时,可确定第三边的范围。证明线段不等关系。4、三角形的内角的关系:(1)三角形三个内角和等于_。(2)直角三角形的两个锐角_。5、三角形的稳定性
2、:三角形的形状是固定的,三角形的这个性质叫做三角形的_。6、三角形的分类:(1)三角形按边分类: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形(2)三角形按角分类: 直角三角形(有一个角为_的三角形)三角形 锐角三角形(三个角都是_的三角形) 斜三角形 钝角三角形(有一个角为_的三角形) 锐角三角形 (acute trangle)三个内角都是-_ 直角三角形 (right triangle)有一个内角是_ 钝角三角形(obtuse triangle)有一个内角是_把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。7、三角形的三
3、种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部,这个点叫三角形的_。三角形的中线将三角形分成面积_的两部分。(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三
4、角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;区别相同中线平分对边三条中线交于三角形内部(1)都是线段(2)都从顶点画出(3)所在直线相交于一点角平分线平分内角三条角平分线交于三角表内部高线垂直于对边(或其延长线)锐角三角形:三条高线都在三角形内部直角三角形:其中两条恰好是直角边钝角三角形:其中两条在三角表外部8、三角形的面积:三角形的面积=底高二、全等图形:定义:能够完全重合的两个图形叫做全等图形。 性质:全等图形的形状和大小都相同。3、 全等三角形 1、全等三角形及有关概念:能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对
5、应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。2、全等三角形的表示:全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们
6、的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)一、全等三角形三角形全等的4个种判定公理: 1判定和性质 一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等 对应中线相等,对应高相等,对应角平分线相等判定方法条件注意边边边公理(SSS)三边对应相等三边对应相等边角边公理(SAS)两边
7、和它们的夹角对应相等(“两边夹一角”)必须是两边夹一角,不能是两边对一角角边角公理(ASA)两角和它们的夹边对应相等(“两角夹一边”)不能理解为两角及任意一边角角边公理(AAS)两角和其中一角的对边对应相等注: 判定两个三角形全等必须有一组边对应相等; 全等三角形面积相等2证题的思路:性质1、全等三角形的对应角相等、对应边相等。2、全等三角形的对应边上的高对应相等。3、全等三角形的对应角平分线相等。4、全等三角形的对应中线相等。5、全等三角形面积相等。6、全等三角形周长相等。(以上可以简称:全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。(SSS)8、两边和它们的夹角对应相等的两个
8、三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)1)、如图,AB=AC, BD=DC 2)、如图,AM=AN, BM=BN 求证:ABDACD 求证:AMBANB 证明:在ABD和ACD中 证明:在AMB和ANB中 ABD ACD( ) ( ) 3)如图,ABAC,BC,你能证明ABDACE吗?证明:ABD和ACE中 ( )4)、如图,已知AC与BD交于点O,ADBC,且ADBC,你能说明BO=DO吗?证明:ADBC(已知)A= ,( )
9、D= ,( )在 中, ( )BO=DO( ) 5)、已知:如图,ADBC,ADCB,AE=CF 求证:ADFCBE4、 作三角形1、已知三角形的两边及其夹角,求作这个三角形.已知:线段a,c,。求作:ABC,使得BC= a,AB=c,ABC=。作法与过程:(1)作一条线段BC=a,(2)以B为顶点,BC为一边,作角DBC=a;(3)在射线BD上截取线段BA=c;(4)连接AC,ABC就是所求作的三角形。2、已知三角形的两角及其夹边,求作这个三角形.已知:线段,线段c 。求作:ABC,使得A=,B=,AB=c。作法:(1)作_=; (2)在射线_上截取线段_=c; (3) 以_为顶点,以_为一
10、边,作_=,_交_于点_.ABC就是所求作的三角形.3、已知三角形的三边,求作这个三角形.已知:线段a,b,c。求作:ABC,使得AB=c,AC=b,BC=a。做法:(1)作线段AB=a; (2)以A为圆心,以b为半径画弧,再以B为圆心,以c为半径画弧,两弧交于点C; (3)连结AC,BC,则三角形ABC为所求的三角形.5、 利用三角形全等测距离能利用三角形的全等解决实际问题,能在解决问题的过程中进行有条理的思考和表达。巩固练习:1)、如图,山脚下有A、B两点,要测出A、B两点的距离。(1)在地上取一个可以直接到达A、B点的点O,连接AO并延长到C,使AO=CO,你能完成下面的图形?(2)说明
11、你是如何求AB的距离。2)、如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在一条直线上,这时测得DE的长就是AB的长,试说明理由。检测练习:1、选择:三角形三个内角中,锐角最多可以是( )A、0个 B、1个 C、2个 2、如下图,ABC中,A=60,C=80,B= 度;(第2题) (第3题) (第4题)3、如上图,1=60,D=20,则A= 度;4、如右图,ADBC,1=40,2=30,则B= 度,C= 度5、在空白处填入“锐角”、“直角”或“钝角”:如果三角形的三个内角都相等,那么这个三角形是 三角形;如果三角形的两个内角都小于40,那么这个三角形是 三角形。6、如图,AB=DC,BF=CE,AE=DF,你能找到一对全等的三角形吗?说明你的理由。7、如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,你能找到哪两个三角形全等?说明你的理由。 8、如图,ABCD,AD,BFCE,AEB110,求DCF的度数。9、如图,在RtACB中,C90,BE是角平分线,EDAB于D,且BDAD,试确定A的度数。10、如图,AB/DC,AD/BC,AEBD,CFBD,垂足分别为E、F,试说明AE=CF 7 / 7