分式函数的图像及性质

上传人:yh****1 文档编号:135597540 上传时间:2020-06-17 格式:DOC 页数:10 大小:361.50KB
返回 下载 相关 举报
分式函数的图像及性质_第1页
第1页 / 共10页
分式函数的图像及性质_第2页
第2页 / 共10页
分式函数的图像及性质_第3页
第3页 / 共10页
分式函数的图像及性质_第4页
第4页 / 共10页
分式函数的图像及性质_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《分式函数的图像及性质》由会员分享,可在线阅读,更多相关《分式函数的图像及性质(10页珍藏版)》请在金锄头文库上搜索。

1、.分式函数的图像与性质 学习过程 1、分式函数的概念形如的函数称为分式函数。如,等。2、分式复合函数形如的函数称为分式复合函数。如,等。 学习探究探究任务一:函数的图像与性质问题1:的图像是怎样的?例1、画出函数的图像,依据函数图像,指出函数的单调区间、值域、对称中心。【分析】,即函数的图像可以经由函数的图像向右平移1个单位,再向上平移2个单位得到。如下表所示:由此可以画出函数的图像,如下:单调减区间:;值域:;对称中心:。【反思】的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定?【小结】的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。分式函数的图像与性

2、质 (1)定义域: ;(2)值域:;(3)单调性:单调区间为;(4)渐近线及对称中心:渐近线为直线,对称中心为点;(5)奇偶性:当时为奇函数;(6)图象:如图所示问题2:的图像是怎样的?例2、根据与的函数图像,绘制函数的图像,并结合函数图像指出函数具有的性质。【分析】画函数图像需要考虑函数的定义域、值域、单调性与单调区间,奇偶性,周期性,凸凹性(此点不作要求),关键点坐标(最值点、与坐标轴交点)、辅助线(对称轴、渐近线)。绘图过程中需综合考虑以上要素,结合逼近与极限思想开展。解:函数的定义域为:;根据单调性定义,可以求出的单调区间增区间:减区间:函数的值域为:函数的奇偶性:奇函数函数图像的渐近

3、线为:函数的图像如下:【反思】如何绘制陌生函数的图像?研究新函数性质应从哪些方面入手?【小结】分式函数的图像与性质:(1)定义域:;(2)值域:;(3)奇偶性:奇函数;(4)单调性:在区间上是增函数,在区间上为减函数;(5)渐近线:以轴和直线为渐近线;(6)图象:如右图所示例3、根据与的函数图像,绘制函数的图像,并结合函数图像指出函数具有的性质。【分析】结合刚才的绘图经验,不难绘制出的图像解:函数的定义域为:;根据单调性定义,可以判断出的单调性,单调增区间为:.函数的值域为:函数的奇偶性:奇函数函数图像的渐近线为:函数的图像如下:【反思】结合刚才的两个例子, 与的图像又是怎样的呢?思考与的图像

4、是怎样的呢?的图像呢?函数的图像如下,绘制的过程可以根据刚才的绘图经验。【注】,由于与的图像关于轴对称,所以还可以根据的图像,对称的画出的图像。同样的道理的图像与的图像关于轴对称,所以图像如下:.【小结】的图像如下:(i) (ii) (iii) .(iv) 来源:学+科+网Z+X+X+K的单调性、值域、奇偶性等,可以结合函数的图像研究。探究任务二:函数的图像与性质问题3:函数的图像是怎样的?单调区间如何?【分析】所以的图像与的图像形状完全相同,只是位置不同。图像的对称中心为:单调增区间为:单调减区间为:值域:图像如下:【反思】函数的性质如何呢?单调区间是怎样的呢?【小结】对于分式函数而言,分子

5、次数高于分母时,可以采用问题3中的方法,将函数表达式写成部分分式,在结合函数的图像的平移,由熟悉的四类分式函数的图像得到新的函数图像,再结合函数的图像研究函数的性质。对于分子的次数低于分母的次数的时候,可以考虑分子分母同时除以分子(确保分子不为0),再着力研究分母的性质与图像,间接地研究整个函数的性质。如:二次分式函数具有形式.我们将要研究它的定义域,值域,单调性,极值.1. 定义域和有界性,设 .则函数定义域 .当.此时函数无界.当,函数有界且为常值函数(很少遇到的情况,比如 ).所以通常当 ,二次分式函数是无界的. 是函数的渐近线.当,函数定义域为 .函数有界.2. 单调性,极值,值域当,

6、可以将函数化为 .对于值域中的每一个y,方程都有实数解, .这样就可以求出值域.值域的两个端点(方程的两个解)为函数极大值和极小值.但为了计算在何处取得极值,需将极值代入函数解出 ,计算可能有点慢.下文会给出一个简便的计算方法. ,根据极值与的大小即可判断单调区间.这种情况最多有三个单调区间.当,用判别式法可能会产生增根.此时通常会解出 .出现这种情况,求解和 .分式可化为一次分式,根据定义去求出这个一次分式值域.比如 分离变量和换元再用基本不等式求解也是解决二次分式的常规方法,再.下面给出一个具体例子. .首先定义域 解得 .分离分子中的二次项得 . .代入得 函数值域 根据, 可判断出单调区间 共有5个单调区间顺便再算一下函数零点 有了这些信息,我们很容易画出函数大致图像

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号