最值问题的十一种解法(通用)

上传人:我**** 文档编号:134583528 上传时间:2020-06-06 格式:DOC 页数:10 大小:838.50KB
返回 下载 相关 举报
最值问题的十一种解法(通用)_第1页
第1页 / 共10页
最值问题的十一种解法(通用)_第2页
第2页 / 共10页
最值问题的十一种解法(通用)_第3页
第3页 / 共10页
最值问题的十一种解法(通用)_第4页
第4页 / 共10页
最值问题的十一种解法(通用)_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《最值问题的十一种解法(通用)》由会员分享,可在线阅读,更多相关《最值问题的十一种解法(通用)(10页珍藏版)》请在金锄头文库上搜索。

1、最值问题的十一种解法最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系所以其解法灵活,综合性强,能力要求高解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法考生的运算能力,分析问题和解决问题能力在这里充分展现为帮助同学们探索这类型问题的解题规律,指导高考复习,本文将这类问题作一个简单归纳一、 配方法例:当时,求函数的最大值和最小值解析:,当时,显然由二次函数的性质可得,二、 判别式法对于所求的最值问题,如果能将已

2、知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值例:已知,求的最值解析:由已知,变形得,则,即有 故 因此 ,无最小值例3:若、且满足:,则= = 解析:由已知,变形得:,则,即有,于是,即 即同理,则,即有,于是,即 即注意:关于、的有交叉项的二元二次方程,通常用此法例4:已知函数,求的最值解析:函数式变形为:,由已知得,即:,即:因此 ,例5:已知函数的值域为,求常数解析: ,即由题意:所以,即,注意:判别式求函数的值域或已知值域求参数,把转化为关于的二次函数,通过方程有实根,判别式,从而求得原函数的值域或参数的值.形如(、不同时为0),常用此法求得

3、例6:在条件下,求的最大值解析:设,因,故 ,则 即 因为 ,故,于是 即 将代入方程得 ,所以注意:因仅为方程有实根,的必要条件,因此,必须将代入方程中检验,看等号是否可取三、 代换法(一)局部换元法例7:求函数的最值解析:令,则,函数当时,当时取等号当时,令,则,因为 ,即有,所以在2,内递增故 所以 当时,无最大值; 当时,无最大值例8:求函数的最值解析:设 (),则由原式得当且仅当 即时取等号故,无最小值例9:已知,求函数的最值解析:令则 且,于是当时,;当时,注意:若函数含有和,可考虑用换元法解(二)三角代换法(有时也称参数方程法)例10:已知、,求的最值解析:设,(为参数)因 ,故

4、 故当且时,;当且时,例11:实数、适合:,设,则+=_解析:令,则当时,;当时,所以 例12:求函数 ()的最值解析:令,则又令,则 即有 所以,注意:利用重要不等式时,要满足“一正二定三相等”例13:已知、且,求的最值解析:化为,得参数方程为故 ,(三)均值换元法例14:已知,求证:的最小值为解析:由于本题中、的取值范围为一切实数,故不能用三角换元,但根据其和为,我们可以令,(),则 的最小值为在即时取等号四、 三角函数有界法对于,总有,例15:求函数的最值解析:因为 ,故当时,;当时,五、 均值不等式法例16:在任意三角形内求一点,使它到三边之积为最大解析:设三角形的三边长分别为、,面积

5、为,三角形内一点到三边的距离分别为、(定值) 即 (时取等号)因此,当此点为三角形的重心时(这时、面积相等),它到三边之积为最大例17:有矩形的铁皮,其长为30,宽为14,要从四角上剪掉边长为 的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问为何值时,矩形盒子容积最大,最大容积是多少?解析:依题意,矩形盒子底边长为 ,底边宽为 ,高为 盒子容积 (显然:、)设 ,要用均值不等式则解得:,从而 故矩形盒子的最大容积为576 也可:令或注意:均值不等式应用时,要注意等号成立的条件(一正二定三相等),当条件不满足时要灵活运用拆项、凑项、凑系数、平方等技巧凑配系数,适当时可以用待定系数法来求例18

6、:已知(、均为锐角),那么的最大值等于_解析:因、均为锐角,所以当且仅当时取等号,故的最大值为例19:求函数的最小值(、)解析: 当且仅当 即 时,函数取得最小值六、 单调性法(一)利用若干次“”(或“”)求函数的最值例20:求函数在,内的最小值解析:当时,上式中的两个 “”中的等号同时成立,所以是 “精确的”不等式因而 另:此题还可用换元以及函数单调性来判断(二)形如的函数的最值(1),时,函数在,内递增,在,内递减,在,内递减,在,内递增(2),时,函数在,内递减,在,内递增,在,内递增,在,内递减(3),时,函数在,内递减,在,内递减(4),时,函数在,内递增,在,内递增例21:求函数的

7、最值解析:函数令,则,于是 在,内递减,在,内递增所以当,即时,;无最大值例22:求函数的最大值解析:令,则,函数在,内递增所以在,内也是递增的当,即时,七、 平方开方法例23:已知、是不相等的正数,求函数的最值解析:因、是不相等的正数,与不能同时为,故当时,当时,八、 数形结合法有些代数和三角问题,若能借助几何背景和几何直观而求其最值,常能受到直观明快,化难为易的功效例24:求函数的最值解析:将函数式变形为,只需求函数的最值把看成两点,连线的斜率,(即为单位圆上的点),则当直线为单位圆的切线时,其斜率为最大或最小设过点的单位圆的切线方程为,即 则圆心到切线的距离为,解得:,从而函数最大值为;

8、最小值为九、 利用二次函数的性质例25:设,且,求当、为何值时,取得最大值和最小值,并求出最大值和最小值解析:由,得由,且可得,从而(当时左边取“=”号,时右边取“”号),由对数函数的图象及其性质,即当、时,;当、时,例26:求函数的最值解析:要使有意义,必须有,即 故 当时, ;当(或)时,.例27:求函数的最值解析:因为,结合二次函数图象及其性质:当,时,当,时,当,时,当,时,十、 放缩法例28:若、,且,则的最大值是()解析:同理,三式相加,即当且仅当即时取等号十一、导数法例29:求函数在上的最值解析:,得,所以函数最大值为36,最小值为注意:要求三次及三次以上的函数的最值,以及利用其他方法很难求的函数的最值,通常都用该方法,导数法往往就是最简便的方法,应该引起足够重视例30:求函数的最值解析:函数的定义域为,;,又是上的连续函数故有在上递增,在上递减,故函数最大值为,最小值为当然,解最值问题的方法远远不止这些,例如,还有复合函数法,反函数法等等,这里只是对求最值问题的方法作一个部分的归纳就是一道题目里面,有时也是几种方法并用,如例7就用到了换元法和单调性法,例12就用到了三角换元法和重要不等式法,例17用导数法甚至更为简单解函数的最值问题,关键还在具体问题,具体分析,具体处理

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号