广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)

上传人:我**** 文档编号:134542888 上传时间:2020-06-06 格式:DOC 页数:9 大小:633KB
返回 下载 相关 举报
广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)_第1页
第1页 / 共9页
广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)_第2页
第2页 / 共9页
广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)_第3页
第3页 / 共9页
广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)_第4页
第4页 / 共9页
广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)》由会员分享,可在线阅读,更多相关《广东省2020届高三数学一模试题分类汇编 圆锥曲线(通用)(9页珍藏版)》请在金锄头文库上搜索。

1、广东省2020届高三数学一模试题分类汇编圆锥曲线一、选择题1、(2020东莞一模)设是椭圆上的点若是椭圆的两个焦点,则等于( )A4 B5 C8 D10 D2、(2020茂名一模)已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是等腰直角三角形,则这个椭圆的离心率是( )A、 B、 C、 D、C3、(2020汕头一模)中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为()A、x2y22 w.w.w.k.s.5 u.c.o.m B、x2y2 C、x2y21 D、x2y2A4、(2020韶关一模)圆上的动点到直线的最小距离为 A1 B

2、 C D B5、(2020深圳一模)设平面区域是由双曲线的两条渐近线和椭圆的右准线所围成的三角形(含边界与内部)若点,则目标函数的最大值为A B CDC6、(2020湛江一模)过点A (3 , 0 ) 的直线l与曲线 有公共点,则直线l斜率的取值范围为 A(, ) B, C(, ) D, D二、解答题1、(2020广州一模)已知动圆C过点A(2,0),且与圆M:(x2)2+x2=64相内切(1)求动圆C的圆心的轨迹方程;(2)设直线l: y=kx+m(其中k,mZ)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线l,使得向量,若存在,指出这样的直线有多少条?若不存

3、在,请说明理由.(本题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、类与整的数学思想方法,以及推理论证能力、运算求解能力和创新意识)解:(1)圆M:(x2)2+x2=64,圆心M的坐标为(2,0),半径R=8.|AM|=4|AM|, 3分圆心CD的轨迹是中心在原点,以A,M两点为焦点,长轴长为8的椭圆,设其方程为(ab0),则a=4,c=2,b2=a2c2=12,所求动圆C的圆心的轨迹方程为.5分(2)由消去y 化简整理得:(3+4k2)x2+8kmx+4m248=0,设B(x1,y1),D(x2,y2),则x1+x2=.1=(8km)24(3+4k2) (4m248)0. 7分由

4、消去y 化简整理得:(3k2)x22kmxm212=0,设E(x3,y3),F(x4,y4),则x3+x4=.2=(2km)2+4(34k2) (m2+12)0. 9分, (x4x2 )+ (x3x1) =0,即x1+x2= x3+x4,2km=0或,解得k=0或m=0, 11分当k=0时,由、得,mZ,m的值为3,2,1,0,1,2,3;当m=0时,由、得,kZ,k=1,0,1.满足条件的直线共有9条. 14分2、(2020广东三校一模)知定点和定直线,是定直线上的两个动点且满足,动点满足,(其中为坐标原点)(1)求动点的轨迹的方程;(2)过点的直线与相交于两点求的值;设,当三角形的面积时,

5、求的取值范围.解:(1)设 (均不为),由 得,即 2分由得,即 2分 得 动点的轨迹的方程为 6分(2)由(1)得的轨迹的方程为,,设直线的方程为,将其与的方程联立,消去得. 8分设的坐标分别为,则. , 9分故 10分解法一:, 即 又 , . 可得 11分故三角形的面积, 12分因为恒成立,所以只要解. 即可解得. 14分解法二:,(注意到)又由有,三角形的面积(以下解法同解法一)3、(2020东莞一模)设椭圆的左右焦点分别为、,是椭圆上的一点,且,坐标原点到直线的距离为(1)求椭圆的方程;(2) 设是椭圆上的一点,过点的直线交轴于点,交轴于点,若,求直线的斜率解: ()由题设知由于,则

6、有,所以点的坐标为.2分故所在直线方程为3分所以坐标原点到直线的距离为,又,所以,解得:.5分所求椭圆的方程为.7分(2)由题意可知直线的斜率存在,设直线斜率为,则直线的方程为,则有.9分设,由于、三点共线,且.根据题意得,解得或.12分又在椭圆上,故或,解得,综上,直线的斜率为或 14分4、(2020番禺一模)已知抛物线的焦点为,点是抛物线上横坐标为4、且位于轴上方的点,点到抛物线准线的距离等于5,过作垂直轴于点,线段的中点为.(1)求抛物线方程;(2)过点作,垂足为,求点的坐标;(3)以点为圆心,为半径作圆,当是轴上一动点时,讨论直线与圆的位置关系解:(1)抛物线的准线 所求抛物线方程为

7、3分(2)点A的坐标是(4,4), 由题意得B(0,4),M(0,2),又F(1,0), 则FA的方程为y=(x1),MN的方程为解方程组 7分(3)由题意得,圆M的圆心是点(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离, 9分当m4时,直线AK的方程为 即为 10分圆心M(0,2)到直线AK的距离, 11分令时,直线AK与圆M相离; 12分 当m=1时,直线AK与圆M相切; 13分 当时,直线AK与圆M相交. 14分5、(2020江门一模)如图6,抛物线:与坐标轴的交点分别为、图6、.求以、为焦点且过点的椭圆方程;经过坐标原点的直线与抛物线相交于、两点,若

8、,求直线的方程由解得、-3分所以,从而-5分,椭圆的方程为-6分依题意设:-7分,由得-8分依题意得-11分,解得-13分所以,直线的方程是或-14分6、(2020茂名一模)已知椭圆的中心在原点,焦点在x 轴上,离心率为,且椭圆经过圆C:的圆心C。(1)求椭圆的方程;(2)设直线过椭圆的焦点且与圆C相切,求直线的方程。解:(1)圆C方程化为:,圆心C1分设椭圆的方程为,则.2分所以所求的椭圆的方程是: .6分(2)由(1)得到椭圆的左右焦点分别是,在C内,故过没有圆C的切线.8分设的方程为.9分 点C到直线的距离为d,由.11分化简得:解得:13分故的方程为14分7、(2020韶关一模)已知动

9、圆过定点,且与定直线相切.(I)求动圆圆心的轨迹C的方程;(II)若是轨迹C的动弦,且过, 分别以、为切点作轨迹C的切线,设两切线交点为Q,证明:.解:(I)依题意,圆心的轨迹是以为焦点,为准线的抛物线上2分 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是.5分(II) .6分, ,8分抛物线方程为所以过抛物线上A、B两点的切线斜率分别是, ,所以,8、(2020深圳一模)如图,两条过原点的直线分别与轴、轴成的角,已知线段的长度为,且点在直线上运动,点在直线上运动 () 求动点的轨迹的方程; ()设过定点的直线与()中的轨迹交于不同的两点、,且为锐角,求直线的斜率的取值范围解:()由已知得直线,:,:, 2分 在直线上运动,直线上运动,,, 3分由得,即, 5分动点的轨迹的方程为 6分()直线方程为,将其代入,化简得, 7分 设、, 且, 9分为锐角, 10分即,将代入上式,化简得, 12分由且,得 14分

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号