puma560机械臂matlab建模仿真

上传人:飞****9 文档编号:131891801 上传时间:2020-05-10 格式:DOC 页数:5 大小:22.28KB
返回 下载 相关 举报
puma560机械臂matlab建模仿真_第1页
第1页 / 共5页
puma560机械臂matlab建模仿真_第2页
第2页 / 共5页
puma560机械臂matlab建模仿真_第3页
第3页 / 共5页
puma560机械臂matlab建模仿真_第4页
第4页 / 共5页
puma560机械臂matlab建模仿真_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《puma560机械臂matlab建模仿真》由会员分享,可在线阅读,更多相关《puma560机械臂matlab建模仿真(5页珍藏版)》请在金锄头文库上搜索。

1、一、安装Robotics Toolbox for MATLAB1、下载该工具箱:迅雷搜狗下载2、将压缩包解压到一个文件夹下面3、打开MATLAB,在File菜单下选择Set Path,打开如下对话框4、单击“Add With SubFolder”,选择上面的工具箱5、点击“Save”,然后点击“Close”。这样就把工具箱的路径添加到MATLAB的路径中了,也就是工具箱安装了。 PUMA560的MATLAB仿真要建立PUMA560的机器人对象,首先我们要了解PUMA560的D-H参数,之后我们可以利用Robotics Toolbox工具箱中的link和robot函数来建立PUMA560的机器人

2、对象。其中link函数的调用格式:L = LINK(alpha A theta D)L =LINK(alpha A theta D sigma)L =LINK(alpha A theta D sigma offset)L =LINK(alpha A theta D, CONVENTION)L =LINK(alpha A theta D sigma, CONVENTION)L =LINK(alpha A theta D sigma offset, CONVENTION)参数CONVENTION可以取standard和modified,其中standard代表采用标准的D-H参数,modified

3、代表采用改进的D-H参数。参数alpha代表扭转角 ,参数A代表杆件长度,参数theta代表关节角,参数D代表横距,参数sigma代表关节类型:0代表旋转关节,非0代表移动关节。另外LINK还有一些数据域:LINK.alpha %返回扭转角LINK.A %返回杆件长度LINK.theta %返回关节角LINK.D %返回横距LINK.sigma %返回关节类型LINK.RP %返回R(旋转)或P(移动)LINK.mdh %若为标准D-H参数返回0,否则返回1LINK.offset %返回关节变量偏移LINK.qlim %返回关节变量的上下限 min maxLINK.islimit(q)%如果关

4、节变量超限,返回 -1, 0, +1LINK.I%返回一个33 对称惯性矩阵LINK.m%返回关节质量LINK.r%返回31的关节齿轮向量LINK.G%返回齿轮的传动比LINK.Jm%返回电机惯性LINK.B%返回粘性摩擦LINK.Tc%返回库仑摩擦LINK.dhreturn legacy DH rowLINK.dyn return legacy DYN row其中robot函数的调用格式:ROBOT %创建一个空的机器人对象ROBOT(robot) %创建robot的一个副本ROBOT(robot, LINK)%用LINK来创建新机器人对象来代替robotROBOT(LINK, .) %用L

5、INK来创建一个机器人对象ROBOT(DH, .) %用D-H矩阵来创建一个机器人对象ROBOT(DYN, .)%用DYN矩阵来创建一个机器人对象利用MATLAB中Robotics Toolbox工具箱中的transl、rotx、roty和rotz可以实现用齐次变换矩阵表示平移变换和旋转变换。下面举例来说明:A 机器人在x轴方向平移了0.5米,那么我们可以用下面的方法来求取平移变换后的齐次矩阵: transl(0.5,0,0)ans = 1.0000 0 0 0.5000 0 1.0000 0 0 0 0 1.0000 0 0 0 0 1.0000B 机器人绕x轴旋转45度,那么可以用rotx

6、来求取旋转后的齐次矩阵: rotx(pi/4)ans = 1.0000 0 0 0 0 0.7071 -0.7071 0 0 0.7071 0.7071 0 0 0 0 1.0000C 机器人绕y轴旋转90度,那么可以用roty来求取旋转后的齐次矩阵: roty(pi/2)ans = 0.0000 0 1.0000 0 0 1.0000 0 0 -1.0000 0 0.0000 0 0 0 0 1.0000D 机器人绕z轴旋转-90度,那么可以用rotz来求取旋转后的齐次矩阵: rotz(-pi/2)ans = 0.0000 1.0000 0 0 -1.0000 0.0000 0 0 0 0

7、1.0000 0 0 0 0 1.0000当然,如果有多次旋转和平移变换,我们只需要多次调用函数在组合就可以了。另外,可以和我们学习的平移矩阵和旋转矩阵做个对比,相信是一致的。3 轨迹规划利用Robotics Toolbox提供的ctraj、jtraj和trinterp函数可以实现笛卡尔规划、关节空间规划和变换插值。其中ctraj函数的调用格式:TC = CTRAJ(T0, T1, N)TC = CTRAJ(T0, T1, R)参数TC为从T0到T1的笛卡尔规划轨迹,N为点的数量,R为给定路径距离向量,R的每个值必须在0到1之间。其中jtraj函数的调用格式:Q QD QDD = JTRAJ(

8、Q0, Q1, N)Q QD QDD = JTRAJ(Q0, Q1, N, QD0, QD1)Q QD QDD = JTRAJ(Q0, Q1, T)Q QD QDD = JTRAJ(Q0, Q1, T, QD0, QD1)参数Q为从状态Q0到Q1的关节空间规划轨迹,N为规划的点数,T为给定的时间向量的长度,速度非零边界可以用QD0和QD1来指定。QD和QDD为返回的规划轨迹的速度和加速度。其中trinterp函数的调用格式:TR = TRINTERP(T0, T1, R)参数TR为在T0和T1之间的坐标变化插值,R需在0和1之间。要实现轨迹规划,首先我们要创建一个时间向量,假设在两秒内完成某个

9、动作,采样间隔是56ms,那么可以用如下的命令来实现多项式轨迹规划:t=0:0.056:2; q,qd,qdd=jtraj(qz,qr,t);其中t为时间向量,qz为机器人的初始位姿,qr为机器人的最终位姿,q为经过的路径点,qd为运动的速度,qdd为运动的加速度。其中q、qd、qdd都是六列的矩阵,每列代表每个关节的位置、速度和加速度。如q(:,3)代表关节3的位置,qd(:,3)代表关节3的速度,qdd(:,3)代表关节3的加速度。4 运动学的正问题利用Robotics Toolbox中的fkine函数可以实现机器人运动学正问题的求解。其中fkine函数的调用格式:TR = FKINE(R

10、OBOT, Q)参数ROBOT为一个机器人对象,TR为由Q定义的每个前向运动学的正解。以PUMA560为例,定义关节坐标系的零点qz=0 0 0 0 0 0,那么fkine(p560,qz)将返回最后一个关节的平移的齐次变换矩阵。如果有了关节的轨迹规划之后,我们也可以用fkine来进行运动学的正解。比如:t=0:0.056:2; q=jtraj(qz,qr,t); T=fkine(p560,q);返回的矩阵T是一个三维的矩阵,前两维是44的矩阵代表坐标变化,第三维是时间。5 运动学的逆问题利用Robotics Toolbox中的ikine函数可以实现机器人运动学逆问题的求解。其中ikine函数

11、的调用格式:Q = IKINE(ROBOT, T)Q = IKINE(ROBOT, T, Q)Q = IKINE(ROBOT, T, Q, M)参数ROBOT为一个机器人对象,Q为初始猜测点(默认为0),T为要反解的变换矩阵。当反解的机器人对象的自由度少于6时,要用M进行忽略某个关节自由度。有了关节的轨迹规划之后,我们也可以用ikine函数来进行运动学逆问题的求解。比如:t=0:0.056:2; T1=transl(0.6,-0.5,0); T2=transl(0.4,0.5,0.2); T=ctraj(T1,T2,length(t); q=ikine(p560,T); 我们也可以尝试先进行正解,再进行逆解,看看能否还原。Q=0 pi/4 pi/4 0 pi/8 0; T=fkine(p560,q); qi=ikine(p560,T);6 动画演示有了机器人的轨迹规划之后,我们就可以利用Robotics Toolbox中的plot函数来实现对规划路径的仿真。puma560;T=0:0.056:2; q=jtraj(qz,qr,T); plot(p560,q);当然,我们也可以来调节PUMA560的六个旋转角,来实现动画演示。drivebot(p560)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > IT计算机/网络 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号