初中数学最值问题 集锦.doc

上传人:li****i 文档编号:131735398 上传时间:2020-05-10 格式:DOC 页数:36 大小:1.80MB
返回 下载 相关 举报
初中数学最值问题 集锦.doc_第1页
第1页 / 共36页
初中数学最值问题 集锦.doc_第2页
第2页 / 共36页
初中数学最值问题 集锦.doc_第3页
第3页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《初中数学最值问题 集锦.doc》由会员分享,可在线阅读,更多相关《初中数学最值问题 集锦.doc(36页珍藏版)》请在金锄头文库上搜索。

1、 “最值问题” 集锦平面几何中的最值问题 01几何的定值与最值 07最短路线问题 14对称问题 18巧作“对称点”妙解最值题 22数学最值题的常用解法26求最值问题29有理数的一题多解344道经典题37平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率下面介绍几个简例 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1) 应用几何性质: 三角

2、形的三边关系:两边之和大于第三边,两边之差小于第三边; 两点间线段最短; 连结直线外一点和直线上各点的所有线段中,垂线段最短; 定圆中的所有弦中,直径最长。 运用代数证法: 运用配方法求二次三项式的最值; 运用一元二次方程根的判别式。例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P,连结A P,BP,在ABP中AP+BPAB,如果AP+BPAB,则P必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。取点A关于直线L的对称点A,则AP AP,在ABP中AP+BPAB,当P移到AB与直线L的交点处P点时AP+BPAB,所以这时PA+PB最

3、小。1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图391)?分析 本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R由于ABCD,必有AC=BD若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可 解 作DEAB于E,则x2=BD2=ABBE2R(R-y)2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可-x2+2Rx+2R2=3R2-(x-R)23R2,上式只有当x=R时取等号,这时有所以2y=R=x所以把半圆三等分,便可得到梯形两个顶点C,D,这时,

4、梯形的底角恰为60和1202 .如图392是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解 设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+x=8,若窗户的最大面积为S,则把代入有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图393)?分析与解 因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB因此,猜想P在半圆弧中点时,PA+PB取最大值设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB

5、,则CB是切线为了证PA+PB最大,我们在半圆弧上另取一点P,连PA,PB,延长AP到C,使PC=BP,连CB,CC,则PCB=PBC=PCB=45,所以A,B,C,C四点共圆,所以CCA=CBA=90,所以在ACC中,ACAC,即PA+PBPA+PB 4 如图394,在直角ABC中,AD是斜边上的高,M,N分别是ABD,ACD的内心,直线MN交AB,AC于K,L求证:SABC2SAKL 证 连结AM,BM,DM,AN,DN,CN因为在ABC中,A=90,ADBC于D,所以 ABD=DAC,ADB=ADC=90因为M,N分别是ABD和ACD的内心,所以1=2=45,3=4,所以ADNBDM,又

6、因为MDN=90=ADB,所以 MDNBDA,所以 BAD=MND由于BAD=LCD,所以 MND=LCD, 所以D,C,L,N四点共圆,所以 ALK=NDC=45同理,AKL=1=45,所以AK=AL因为 AKMADM,所以 AK=AD=AL而而从而所以 SABCSAKL5. 如图395已知在正三角形ABC内(包括边上)有两点P,Q求证:PQAB证 设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQP1Q1因为AQ1P1+P1Q1C=180,所以AQ1P1和P1Q1C中至少有一个直角或钝角若AQ1P190,则 PQP1Q1AP1AB;若P1Q1C90,则 PQP1Q1P1

7、C同理,AP1C和BP1C中也至少有一个直角或钝角,不妨设BP1C90,则 P1CBC=AB 对于P,Q两点的其他位置也可作类似的讨论,因此,PQAB 6. 设ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题)解 如图396,延长BA到B,使AB=AB,连BC,则过顶点A的直线l或者与BC相交,或者与BC相交以下分两种情况讨论(1)若l与BC相交于D,则 所以 只有当lBC时,取等号 (2)若l与BC相交于D,则所以 上式只有lBC时,等号成立 7. 如图397已知直角AOB中,直角顶点O在单位圆心上,斜边与单位圆相

8、切,延长AO,BO分别与单位圆交于C,D试求四边形ABCD面积的最小值解 设O与AB相切于E,有OE=1,从而即 AB2当AO=BO时,AB有最小值2从而所以,当AO=OB时,四边形ABCD面积的最小值为几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1特

9、殊位置与极端位置法;2几何定理(公理)法;3数形结合法等注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法【例题就解】【例1】 如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边APC和等边BPD,则CD长度的最小值为 思路点拨 如图,作CCAB于C,DDAB于D,DQCC,CD2=DQ2+CQ2,DQ=AB一常数,当CQ越小,CD越小,本例也可设AP=,则PB=,从代数角度探求CD的最小值 注:从特殊位置与极端位置

10、的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等 【例2】 如图,圆的半径等于正三角形ABC的高,此圆在沿底边AB滚动,切点为T,圆交AC、BC于M、N,则对于所有可能的圆的位置而言, MTN为的度数( ) A从30到60变动 B从60到90变动C保持30不变 D保持60不变 思路点拨 先考虑当圆心在正三角形的顶点C时,其弧的度数,再证明一般情形,从而作出判断注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最

11、值【例3】 如图,已知平行四边形ABCD,AB=,BC=(),P为AB边上的一动点,直线DP交CB的延长线于Q,求AP+BQ的最小值思路点拨 设AP=,把AP、BQ分别用的代数式表示,运用不等式 (当且仅当时取等号)来求最小值 【例4】 如图,已知等边ABC内接于圆,在劣弧AB上取异于A、B的点M,设直线AC与BM相交于K,直线CB与AM相交于点N,证明:线段AK和BN的乘积与M点的选择无关思路点拨 即要证AKBN是一个定值,在图形中ABC的边长是一个定值,说明AKBN与AB有关,从图知AB为ABM与ANB的公共边,作一个大胆的猜想,AKBN=AB2,从而我们的证明目标更加明确注:只要探求出定

12、值,那么解题目标明确,定值问题就转化为一般的几何证明问题【例5】 已知XYZ是直角边长为1的等腰直角三角形(Z=90),它的三个顶点分别在等腰RtABC(C=90)的三边上,求ABC直角边长的最大可能值思路点拨 顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=,CZ=,建立,的关系式,运用代数的方法求直角边的最大值 注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值学力训练1如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B、C、D,则BB+CC+DD的最大值为 ,最小值为 2如图,AOB=45,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则PQR的周长的最小值为 3如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则的最大值等于

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 中考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号