纳米氧化镁制备方法及性质应用综述全解

上传人:飞****9 文档编号:131343824 上传时间:2020-05-07 格式:DOC 页数:10 大小:735.50KB
返回 下载 相关 举报
纳米氧化镁制备方法及性质应用综述全解_第1页
第1页 / 共10页
纳米氧化镁制备方法及性质应用综述全解_第2页
第2页 / 共10页
纳米氧化镁制备方法及性质应用综述全解_第3页
第3页 / 共10页
纳米氧化镁制备方法及性质应用综述全解_第4页
第4页 / 共10页
纳米氧化镁制备方法及性质应用综述全解_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《纳米氧化镁制备方法及性质应用综述全解》由会员分享,可在线阅读,更多相关《纳米氧化镁制备方法及性质应用综述全解(10页珍藏版)》请在金锄头文库上搜索。

1、纳米氧化镁制备方法及性质应用冯云会高恩军*(沈阳化工大学配位化学研究室,辽宁省无机分子基化学重点实验室)摘要:纳米氧化镁作为一种重要的无机化工产品,由于其尺寸大小而使它具有优异的性能,因此在各个领域被广泛应用。该文章对纳米氧化镁的制备方法做了详细的介绍,包括气相法、液相法、和固相法以及物理方法等;阐述了纳米氧化镁的吸附性能、分解性能以及杀菌性能。关键词:纳米氧化镁;吸附;分解;杀菌随着纳米材料技术的发展,人们的研究范围不再局限于镁合金、镁盐等,而是聚焦于更小尺寸的纳米氧化镁。于是,纳米氧化镁作为一种新型功能无机材料应运而生。纳米氧化镁产品为白色粉末、无毒、无味,产品粒径小,一般介于1100nm

2、,具有较大的比表面积。由于纳米氧化镁尺寸较小,才使得它具有量子尺寸效应、表面效应、小尺寸效应、表面效应和宏观两字隧道效应等特殊性质,这导致了它具有不同于本体材料的光、电、磁等化学性能1,做成涂料可以起到隐身的作用2。另外,研究发现尺寸达到纳米级别的抗菌材料一般具有更强的抗菌活性,而且杀菌效果与纳米粒子的粒径大小,分散程度,比表面积有关,纳米氧化镁能不依赖光照产生抗菌活性3。例如在制备高性能的纳米相氧化铝陶瓷的时候可用纳米氧化镁作为烧结助剂,这样可以在低温的条件下烧结成致密的细晶陶瓷,降低生产成本;以纳米氧化镁和纳米氧化钇或稀土金属氧化物为复合稳定剂烧成及热处理制成的力学性能优良,抗高温老化的部

3、分稳定氧化锆陶瓷可广泛用作高温工程部件及高级耐火材料。1. 制备纳米氧化镁的物理方法1.1物理方法制备纳米氧化镁常见的物理方法分为三种,即真空蒸发法、溶剂蒸发法、惰性气体蒸发法。其中溶剂蒸发法可细分为喷雾干燥发、喷雾热解法、冷冻干燥4。例如,S.Yatsuya等利用流动液面真空蒸发法制得金属氧化物微粒,这种微粒粒径小,约为20nm,无团聚现象,比表面积大,而且产量高,生产设备简单5。但是,由于研磨过程中要接触机械设备,所以避免不了会引入一些杂质粒子,而且用物理方法制得的纳米氧化镁粒子的形貌不可控、无规则,一般不能达到工业标准。1.2化学方法制备纳米氧化镁按照原料状态主要有固相法(以草酸和硝酸镁

4、为原料)、液相法、气相法。目前液相法合成纳米氧化镁应用比较广泛,所用实验原料一般为氯化镁和尿素。1.2.1 固相法制备纳米氧化镁室温固化法是近年来新兴起的一种制备纳米氧化镁的新方法,反应无需溶剂,而且产率高、反应条件简单容易控制,廖莉玲等6以Mg( OAc) 24H2O 和 H2C2O42H2O制得前驱物,于800C的烘箱中烘干,在6000C的马弗炉中煅烧MgC2O4得到产物纳米氧化镁,粒径只有15nm左右,且粒径分布均匀,无团聚现象。该过程发生的化学反应为:Mg( OAc) 24H2O+H2C2O42H2OMgC2O42H2O (1)MgC2O42H2OMgO2 (2)前驱物的热失重分析图如

5、下:图1固相法前驱物热失重图谱Fig.1 thethermal weight losspicture of theprecursorabout solid phase method由图1可知,温度在110-300oC时,曲线下降,此处为过量草酸的热分解;在300-500oC时,由热失重计算,为草酸镁的热分解;在500oC时,前驱物基本保持恒重,说明前驱物在500oC时完全分解,所以煅烧温度选择600oC。1.2.2 液相法制备纳米氧化镁液相法制备纳米氧化镁又可以分为直接沉淀、法均匀沉淀法、溶胶凝胶法、有机配合物前驱体合成法等,大多都以氯化镁和尿素为原料,制得氢氧化镁沉淀,洗涤干燥,放到马弗炉里

6、煅烧,即可达到粒径和形貌不同的纳米氧化镁颗粒。汪国忠等7采用直接沉淀法制备出的纳米氧化镁的直径大约为60nm,该方法选择的原料为MgCl26H2O,用NH3H2O与MgCl26H2O合成Mg(OH)2为前驱物;王笃正等以氯化镁和碳酸氨为原料,采用直接沉淀法,通过大量实验对反应温度、加料时间、原料摩尔配比、煅烧温度和煅烧时间等因素进行测试,得到最佳方案,制得的纳米氧化镁粒径为35nm,产率为98.9%8。实验所涉及的反应方程式:MgCl2+(NH4)2CO3=MgCO3+2NH4Cl (3)MgCO3+H2O=Mg(OH)+CO2 (4)Mg(OH)2=MgO+H2O (5)MgCO3=MgO+

7、CO2 (6)同样是以MgCL26H2O为原料,胡章文等9采用直接沉淀法制备氢氧化镁,采用聚乙烯醇做为分散剂,产物纯度达到99%以上,产品纯度较高,平均粒径为35nm,但是需要加分散剂,制备方法繁琐,需要控制的条件太多,而且煅烧温度较高,成本稍贵,为此,刘宝树等以白云石为原料,经 900 1100oC煅烧得白云灰,再用热水对白云灰进行消化,除渣,配制成灰乳,紧接着对石灰乳进行碳化,得到的浆液经过滤得到重镁液,在不同的条件下对重镁水进行热解、干燥和煅烧,该试验对升温速度和热解温度进行了大量实验调整,得到粒径约为100nm的球形纳米氧化镁10。我国的白云石储存量丰富,分布广泛,采用碳化法以白云石为

8、原料制取工业氧化镁的制备工艺简单,成本较低11。但是所得纳米氧化镁粒径较大,粒度分布较宽,而且废液处理困难,此方法还有待提高。此外,对于以氯化镁和尿素为原料的均匀沉淀法制备纳米氧化镁方案,进行溶剂置换时所用的溶剂种类也会影响粒子的分散程度和粒径大小,例如张伟等用水洗、水+醇洗、水+正丁醇洗分别对氢氧化镁进行溶剂置换,煅烧后所得纳米氧化镁粒径大小分别约为45nm、33nm、18nm,粒子的团聚程度依次降低,对于该实验结果,用毛细管理论解释为乙醇和正丁醇的表面张力小于水,而毛细管力随着表面张力的增大而增大,且表面张力越大纳米颗粒的团聚程度就越大,因此在该实验中经水洗后煅烧得到的氧化镁粒径最大,分散

9、性最差;但是正丁醇的表面张力要高于乙醇,实验结果却是用乙醇置换后比用正丁醇置换后煅烧得到的纳米氧化镁团聚程度大,对于此现象可以借助氢键理论来分析,正丁醇中的水的活度系数要大于乙醇中水的活度系数,因此在烘箱中干燥氢氧化镁时正丁醇中的水挥发的量大,共沸过程中会失去更多水,从而阻止氢键的形成(氢键会使纳米颗粒相互聚集,逐渐形成硬团聚),所以正丁醇置换后煅烧得到的产物比乙醇置换后煅烧得到的产物分散性好12。该实验所发生的化学反应有:CO(NH2)2+6H2O=4NH4OH+2CO2 (1)Mg2+2NH4OH=Mg(OH)2+2NH4+ (2)王宝和,张伟等研究了不同干燥方法对纳米氧化镁粉体的团聚、形

10、貌和颗粒尺寸的影响13,该实验方案总共分为两大类,直接干燥法:对制得的氢氧化镁沉淀物分别采取三种干燥措施,第一份放到马弗炉里煅烧,第二份先烘箱干燥后煅烧,第三份先微波炉干燥后煅烧;改性干燥法:用质量分数为1%的DMA对氢氧化镁改性,分成三份,第一份煅烧,第二份烘箱干燥后煅烧,第三份微波炉干燥后煅烧;置换干燥法:将氢氧化镁分成两份,一份用正丁醇共沸蒸馏脱水,再重复上述直接干燥法的三种操作;另一份用乙醇置换后重复直接干燥法的三种操作,最后一份用超临界CO2萃取干燥后煅烧。结果发现微波干燥和超临界CO2干燥后煅烧的微粒分散性最好。该方法考虑全面、周密,精确度高。对纳米氧化镁粉体的TEM图如下: 1

11、2 3 45 6 7 89 10 11 12 13图2 不同干燥法制备出的纳米氧化镁粉体的TEM图Fig.2 The TEM pictures of Nanometer magnesia about various drying methods(此图摘自王宝和干燥方法对纳米氧化镁粉体形貌的影响)张近等通过对反应物配比、煅烧温度和时间等条件的控制,制得粒径为30nm的球形纳米MgO14。该方法不用添加分散剂、置换溶剂等助剂,后处理简单,实验过程简洁易操作。朱传高等采用电解的方法制备前驱体乙醇镁配合物15。电解过程中白色的浑浊物乙醇镁滴加乙酰丙酮即可恢复澄清,乙酰丙酮中的氧离子与镁离子可以形成螯合

12、物,这大大提高了颗粒的分散性。乙酰丙酮在阴极上发生的化学反应如下:最后经红外干燥再煅烧得到粒径为20nm的纳米氧化镁粉末,该实验合成温度低,制得的纳米氧化镁粉末活性高,有机物经高温灼烧产物为气体,不会有残留16。1.3气相法气相法是一种新兴的优良技术,加热金属卤化物、金属有机化合物溶液,使水分挥发,经气相反应使生成物沉淀下来,但是此方法所需实验条件苛刻,成本较高,不适合大批量产业化17。WatariTakanori18等采用气相法制备出粒径为50400nm的立方形纳米氧化镁,该实验探究了粒径大小与镁蒸汽分压和氧蒸汽的关系。1.4 纳米氧化镁尺寸对比VK-Mg30的项目指标:平均粒径:50nm;

13、氧化镁%:99.9;氧化钙%:0.01;氯化物%:0.03;含铁量%:0.01;比表面m2/g 30-50;吸碘值(mg/g)60。该论文所涉及纳米氧化镁粒径及制备方法如表格所示:表1 纳米氧化镁尺寸Table one the size of the nanometer magnesia制备方法Mgo粒径/nm参考文献室温固相法直接沉淀法直接沉淀法直接沉淀法白云石碳化法均匀沉淀法均匀沉淀法溶胶凝胶法均匀沉淀法156235351002030203020304567891012112. 纳米氧化镁的性质及应用纳米氧化镁是随着纳米科学技术的发展而产生的一种新型多功能无机材料。由于纳米粒子粒径小,所以

14、具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而纳米氧化镁呈现出许多不同于本体材料的性能,如:光、电、磁、热、化学及机械等,未来在新材料和环境净化领域有广阔的发展空间。尤其是对有毒气体和有机物的吸附分解研究方面在国内外已经备受关注19。另外,纳米级的氧化镁还具有杀菌、抗菌的作用,在医学领域得到广泛应用。2.1 纳米氧化镁对重金属的吸附分解废水中的贵重金属不仅会造成水污染,而且还会造成严重的资源浪费,所以将金属从废水中提取分离很有应用价值。纳米微粒的比表面积大,导致化学键态失配,出现许多活性中心,大大提高了纳米微粒的吸附能力。Campbell20等对MgO的吸附性能进行了研究,发现吸附量低时,主要形成M-Mg 共价键; 吸附量大的时候,M-O 键和M-Mg共价键同时存在。纳米MgO粉体依靠表面的镁空位和氧空位吸附金属而形成金属团簇,这种强大的吸附作用甚至可以改变金属团簇的化学性质21。2.2 纳米氧化镁对无机气体的分解工业废气和汽车尾气是大气污染的罪魁祸首,近几年来对于大气污染的治理成效一直不是特别明显。Gregg等通过IR光谱研究了MgO对CO2的吸附性能22,发现这种吸附包括物理吸附和碳酸根的化学吸附,其中化学吸附的碳酸根主要有两种,一种为类似于二齿的碳酸根,另一种为类似碳酸镁的碳酸根。Kla

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号