反激式电源设计及应用

上传人:飞****9 文档编号:129300290 上传时间:2020-04-22 格式:DOC 页数:5 大小:117KB
返回 下载 相关 举报
反激式电源设计及应用_第1页
第1页 / 共5页
反激式电源设计及应用_第2页
第2页 / 共5页
反激式电源设计及应用_第3页
第3页 / 共5页
反激式电源设计及应用_第4页
第4页 / 共5页
反激式电源设计及应用_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《反激式电源设计及应用》由会员分享,可在线阅读,更多相关《反激式电源设计及应用(5页珍藏版)》请在金锄头文库上搜索。

1、为提高大家的兴趣,我先讲一点变压器.大家都知道变压器有两种绕法:顺序绕法和夹层绕法.这两种绕法对EMI和漏感有不同的影响. 顺序绕法一般漏感为电感量的5%左右,但由于初,次级只有一个接触面,耦合电容较小,所以EMI比较好. 夹层绕法一般漏感为电感量的1-3%左右,但由于初,次级有两个接触面,耦合电容较大,所以EMI比较难过.一般30-40W以下,功率不大,漏感能量还可以接受,所以用顺序绕法比较多,40W以上,漏感的能量较大,一般只能用夹层绕法。绕组顺序:夹层绕法一般是先初级的1/2-1/3,后次级. 变压器形状:长宽比越大的变压器漏感越小. 耦合电容是最大的共模干扰传导途径.漏感产生的干扰频率

2、比较低,也容易处理. 也许你是不加共模电感吧!很多的公司都是用的三明治绕制的! 并不是说不能用三明治绕,功率稍微大一点也只能用这个方法.否则漏感太大.只是干扰大小的问题,当然在小功率的时候有更多的考虑,比如取消共摸电感,来降低成本. 我也一直是认为更小的耦合电容对EMI有更多的好处.但我在最近的实验中发现当我把漏感控制在0.5%-0.8%时,整机电源的效率显著上升,再测传导和辐射发现原本辐射超过标准2个DB变成留有6.4DB余量.(说明:电源输出电压19V,功率75w.采用四段式绕法)。漏感小后,MOS关断时D-S端的震荡波形的幅度会减小,而这是最重要的干扰源,小了干扰能量会降低. 如何确定功

3、率? 非连续状态下: 初级电感中的单位时间储存的能量:W=1/2*Lp*Ip2*f ,Lp:初级电感量 ,Ip:初级电流峰值 ,f:频率 。开关管关闭时,上述能量向次级传送,一部分被损耗,剩下的为输出功率.功率既不是由电感量确定,也不是由开关管确定,是由你的需要确定. 一般程序是这样,由功率和经验效率确定变压器的型号,也可以由“AP”等书上介绍的方法确定变压器,我一般是根据经验确定,要求比较严格时用允许温升确定变压器型号.确定变压器后其他参数可算出.包括开关管的电流,这样就可以选管子. 变压器的气隙有相关的公式计算,但注意气息一般不要大于1毫米,否则可能引起边缘磁通效应使初级有过热点. 反激电

4、压方式不需要斜率补偿.电流方式大于50%脉宽,或为了防止噪音影响需要加,计算方法可参考3842应用指南.变压器的两种屏蔽层.在小功率电源变压器中,一般有两种屏蔽层,铜泊和绕组.铜泊的原理是切断了初次级间杂散电容的路径,让其都对地形成电容,其屏蔽效果非常好,但工艺,成本都上升.绕组屏蔽两种原理都在起作用:切断电容路径和电场平衡.所以绕组的匝数,绕向和位置对EMI的结果都有很大影响.可惜我不会在这里画图来讲解,总之有一点:屏蔽绕组感应的电压要和被屏蔽绕组工作时的电压方向相反. 屏蔽绕组的位置对电源的待机功耗有较大的影响.下节讲变压器浸漆和屏蔽绕组位置对待机功耗的影响. 你的屏蔽绕组输出接哪儿?不用

5、接哪儿,只接一个脚! 屏蔽在初次级间时,其接地可以不接,接原边地,接次边地,接大地几种形式,一般接原边的地的情况较多.不知道cmg兄是如何处理的. 变压器的外部加屏蔽,特别在flyback中,由于要加气隙,在批量小或简单起见,不是只在中间加,而是磁心截面全有气隙,为减小外部气隙的磁场干扰,而加屏蔽的,此屏蔽一般接大地. 是EMI屏蔽,非安全屏蔽.可以接原边的地线,也可以接原边的高压端,EMI几乎没有分别,因为有高压电容存在,上下对共模信号(一般大于1M后以共模干扰为主)来说是等电位的. 变压器的外部屏蔽可以不接,也可以接初级地线,其对EMI的影响看绕组内部的情况,但注意安规的问题,接初级地线,

6、磁芯就是初级. 屏蔽绕组对变压器的工作有影响:屏蔽绕组为了起到很好的作用,一般紧靠初级,这样它跟初级绕组之间形成一个电容,屏蔽绕组一般接初级地线或高压端,这个电容就相当于接在MOS的D-S端,很明显造成很大的开通损耗.影响了待机功耗,对3842控制来说还可能引起空载不稳定.当然,加屏蔽也会使漏感增大,但此影响在空载时是次要的. 那是不是减小了关断损耗呢?如果关断损耗比开通损耗大呢? 理论上关断损耗会小.但由于关断电路作用都很强,MOS速度又快,所以对关断的损耗影响很小. 另外屏蔽引起的损耗严格来说不全算开通损耗,有一部分是导通损耗,在开通瞬间和导通后,电容放电.用电流探头可以很明显看到导通瞬间

7、有一个很大的尖峰. 我觉得在mos管导通时,屏蔽层等效电容被放电,所以会造成开通损耗,效果就象mos管并电容造成损耗,我想cmg大师是这个意思吧. CMG你好,请教屏蔽绕组的饶法! 比如我的屏蔽绕组在初次级之间,那么从磁芯骨架一针起饶,请问方向是不是和初级线圈的方向相反?饶制屏蔽绕组是不是刚好布满一层为选择?那么屏蔽绕组的起始端和终端是不是接同样点(就是短接后再接出!) 这样是不是和铜泊屏蔽一样? 屏蔽层要充满一层,不能短接,饶向有影响. 屏蔽绕组感应的电压要和被屏蔽绕组工作时的电压方向相反. 你的意思是要反绕是吗? 如果你能反饶也可以,但在生产工艺上是不可能的.可以改变绕组从左到右,或从右到

8、左的方向. 不过为什么不可以呢?把骨架换个向不就搞定了! 可能你没有接触过工厂的生产过程.骨架换方向当然可以,但生产效率差不多降低40%.变压器的价格就上来了.1. 实际的电容总有感抗成分在内,在共模频率内,接高压端和地线真对EMI没有分别吗? 2. 变压器的外部屏蔽可以不接,也可以接初级地线,其对EMI的影响看绕组内部的情况,能详细说明一下吗?比如顺绕和夹绕时外部屏蔽该怎样处理呢? 3.磁芯就是初级是什么意思? 3.磁芯就是初级是什么意思? 即磁芯是在一次侧,应注意与二次侧之间的安规距离. 第一个确实几乎没有影响,我测过很多. 第二个有很多情况,我不一一细说,只告诉你一个原则,绕组最外层如果

9、工作时电压变动大,则接地有巨大的影响,如果变动小,也有影响,但不是很大,当然电源功率本身很大时最好接地. 第三个是安规的问题,已经有人说了.屏蔽形成回路问题的解释:屏蔽是为了抗EMI,产生的原因是漏感造成的,不屏蔽会向变压器周围的空间发射,屏蔽以后会把这部分的能量吸收了,严格来说屏蔽是会多吸收变压器的一点能量,这个问题可以形象地来理解为一个内阻很大的电源向外工作带一个负载电阻,很大的内阻是说他只是漏感造成的,对外的感应能力等效于外带负载,屏蔽相当于把外面的负载短路了,这样的结果就是外面的负载上得不到能量,也就消除了EMI干扰,而被多吸收了的能量其实很小,就是因为它只是漏感,相当于电源内阻非常大

10、,所以多吸收的能量其实非常小,一般设计时都不会考虑,但其确实存在.faraday screen and safety screen:书上说faraday screen 一般采用薄铜片,而且不可形成回路,原边屏蔽要同原边连接或者加一个隔直电容接到原边地,副边屏蔽要同副边连接,而且连接的方式,最好从铜片中点引出,以消除电感耦合.对于safety screen 要接地,但是书上说saftey screen 的额定电流值要至少为电源保险丝的3倍,这是为什么?还有对于磁心加气隙,而采用外部屏蔽,屏蔽的宽度是否很有讲究. 3倍之说需要查安规.但其原理是明显的,如果安全屏蔽的保险丝电流额定值比电源保险丝小或

11、一样大,则发生短路时可能安全屏蔽的保险丝先断,起不到安全屏蔽的作用.至于外部屏蔽,首先要满足安规的要求,在此前提下,当然宽一些会好一点,但增加了成本,只要把两半磁心的结合面(菜鸟评:一语中的,就是消除漏感)包住就好了,还有一个更好的方法,让铜带直接接触磁心(菜鸟评:好家伙,可以增强磁导率,减小漏感!).我也来说一点吧:3.“磁芯就是初级”是什么意思? 磁芯本身是既可当成一次侧,也可当成二次侧,如果你初级用双层绝缘线,使磁芯与初级绕组有加强绝缘,则磁芯算二次侧,要与一次侧保持安规距离,如次级绕组用双层绝缘线,则磁芯算一次侧,要与二次侧保持安规距离,cmg大哥则是把磁芯当成一次侧了,所以此时要注意

12、二次侧出线脚与磁芯的距离,如距离不够则磁芯要绝缘胶布反包.很多人对反激电源开关转换期间的过程不清楚,以至于产生电流突变等想法.我来详细解释一下: MOS关断后,初级电流给MOS输出电容和变压器杂散电容充电(实际杂散电容放电,为简单,我们统一说充电),然后DS端电压谐振上升,由于电流很大,谐振电路Q值很小【由于电流很大,谐振电路Q值很小?不太明白,Q=1/R*根号(L/C),是不是很大啊? You are right.】,所以基本上是线性上升,当DS端电压上升到在次级的电压达到输出电压加整流管的电压后,本应该次级就导通,但由于次极漏感的影响,电压还会上升一些来克服次级漏感的影响,这样反映到初级的

13、电压也略高于正常反射电压,在这样条件下,次级电流开始上升,初级电流开始下降,但不要忘记初级的漏感,它由于不能偶合,所以它的能量要释放,这时是漏感和MOS输出电容,变压器杂散电容谐振,电压冲高,形成几个震荡,能量在嵌位电路消耗掉,这里要注意一点,漏感的电流始终是和初级电流串联的,所以漏感电流的下降过程就是次级电流的上升过程,而漏感电流的下降过程是由嵌位电路电容上的电压和反射电压的差来决定的,此差越大,下降越快,转换过程越快,明显效率会提高,转换的过程是电压电流叠加的过程. 用RC做吸收时,由于稳态时C上的电压和反射电压差别不是太大,所以转换过程慢,效率低,用TVS做吸收时,其允许电压和反射电压差

14、很多,所以转换快,效率高,当然RC耗电是另一个方面.我曾经在21ic上请教过您一些问题,对于mos的关断,通过您上面的分析,已经很透彻了,其他拓扑应是同样的原理,比如正激,在mos关断后,副边折射电流与激磁电流对coss充电,电压上升到vin后,按理折射电流应变为零,但正由于漏感的影响,使电流并不太突变只剩下激磁电流,正是这个原因,导致电流与电压重叠时间过长,mos端并电容也没有明显效果,所以只能减少漏感来减小关端重叠时间,实现零电压关端,我要问的是激磁电感与漏感在一个什么样的比列下才算正常呢,我目前变压器激磁电感20uh,漏感为2uh,我总怀疑漏感太大,您说有无道理呢? 我详细的看了你的帖子

15、,基本同意你的分析.1、“当DS端电压上升到在次级的电压达到输出电压加整流管的电压后,本应该次级就导通”,这种等效方式,能不能具体介绍(包括介绍些文献,这个对理解变压器的能量传输意义重大).根据这段文章是不是可以得出这样的结论:反激式变换器初次级电压差越大,转换就越快,效率就越高? 2、“漏感电流的下降过程就是次级电流的上升过程”,完全正确,而且漏感电流和次极电流都是在维持磁场的能量(楞次定律).由此可知:漏感电流存在的时间越短、量值越小(漏感越小),则次极电流建立的时间也越短、量值越大,越有利于能量的传输,也有助于效率的提升.所以,减小漏感的目的在此!基本同意说明有些不认同,说出来共同分析一

16、下.你的1得出的结论是不对的,和我的原意不符.可能我的语文表达差一些.我的意思是初级电压上升,次级也跟着升,当次级的电压达到次级输出电压加整流管的压降后,次极整流管应该导通. 我再解释一下,你看是不是这样:1、与其说“杂散电容放电” ,不如杂散电容反向充电来得准确. 2、“漏感电流的下降过程是由嵌位电路电容上的电压和反射电压的差来决定的”,无论怎样,漏感电流的下降过程是非常剧烈的,故而激起的自感电压是远高于副边反射电压(MOSFET关断的尖峰应是因此而起),关断时刻RCD上的电压应由自感电压决定,而和反射电压无关. 3、RCD吸收回路吸收初级电感储能是因为与反射电压串联,反激过程始终存在.用TVS,选择合适的工作电压可避免之.。对于第2点是由电磁定律决定的:u=ldi/dt;其中l是原边漏感,其电流的变化必然感应出一相应电压,此电压值由外部电路决定,由公式可知,感应电压越高,电流变化越快,开关管上的电压电流交叉时间越短,关断损耗越小.(因漏感与原边励磁电感串联,故原边漏感厨师电流等于开关管关断时的电流值.) ,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 管理论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号