专题3.10 判断点在圆内外向量应用最厉害(解析版).doc

上传人:飞****9 文档编号:127866838 上传时间:2020-04-06 格式:DOC 页数:23 大小:2.59MB
返回 下载 相关 举报
专题3.10 判断点在圆内外向量应用最厉害(解析版).doc_第1页
第1页 / 共23页
专题3.10 判断点在圆内外向量应用最厉害(解析版).doc_第2页
第2页 / 共23页
专题3.10 判断点在圆内外向量应用最厉害(解析版).doc_第3页
第3页 / 共23页
专题3.10 判断点在圆内外向量应用最厉害(解析版).doc_第4页
第4页 / 共23页
专题3.10 判断点在圆内外向量应用最厉害(解析版).doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《专题3.10 判断点在圆内外向量应用最厉害(解析版).doc》由会员分享,可在线阅读,更多相关《专题3.10 判断点在圆内外向量应用最厉害(解析版).doc(23页珍藏版)》请在金锄头文库上搜索。

1、【题型综述】点与圆的位置关系的解题策略一般有以下几种:利用设而不求思想求出圆心坐标,然后计算圆心到点的距离并和半径比较得解;向量法,通过判断数量积的正负来确定点和圆的位置关系:如已知是圆的直径,是平面内一点,则点在圆内;点在圆外;点在圆上方程法,已知圆的方程,点,则点在圆内;点在圆上;点在圆外.四点共圆问题的解题策略:利用四点构成的四边形的对角互补;利用待定系数法求出过其中三点的圆的方程,然后证明第四点坐标满足圆的方程.【典例指引】类型一 向量法判定点与圆的位置关系例1 【2015高考福建,理18】已知椭圆E:过点,且离心率为()求椭圆E的方程; ()设直线交椭圆E于A,B两点,判断点G与以线

2、段AB为直径的圆的位置关系,并说明理由【解析】解法一:()由已知得解得,所以椭圆E的方程为()设点AB中点为由学科&网所以从而.所以. ,来源:学科网ZXXK故所以,故G在以AB为直径的圆外来源:学科网ZXXK所以不共线,所以为锐角.故点G在以AB为直径的圆外学科&网类型二 四点共圆应用问题例2. (2014全国大纲21)已知抛物线C:的焦点为F,直线与y轴的交点为P,与C的交点为Q,且.(I)求C的方程;(II)过F的直线与C相交于A,B两点,若AB的垂直平分线与C相较于M,N两点,且A,M,B,N四点在同一圆上,求的方程.类型三 动圆过定点问题例3(2012福建理19)如图,椭圆的左焦点为

3、,右焦点为,离心率。过的直线交椭圆于两点,且的周长为8。()求椭圆的方程。()设动直线与椭圆有且只有一个公共点,且与直线相交于点。试探究: 在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由。 (法2)由得,动直线与椭圆有且只要一个交点,且=0,学科&网即,化简得 此时=,=,(,),由得(4,).学科&网假设平面内存在定点满足条件,由图形对称性知,点必在轴上,设(,0),则=0对满足式的,恒成立.=(,),=(4,),=0,整理得, ,解得=1,存在定点(1,0),使得以为直径的圆恒过点.=(1,),=(3,),=0,学科&网恒有, 存在定点(1,0)

4、,使得以为直径的圆恒过点.类型四 证明四点共圆例4. 已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足()证明:点P在C上;()设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【扩展链接】1.O为坐标原点,P、Q为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.2.若椭圆方程为,半焦距为,焦点,设过的直线 的倾斜角为,交椭圆于A、B两点,则有: ;若椭圆方程为,半焦距为,焦点,设过的直线 的倾斜角为,交椭圆于A、B两点,则有: ;同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半

5、焦距)结论:椭圆过焦点弦长公式:3.设为过抛物线焦点的弦,直线的倾斜角为,则. . .;.;.;【同步训练】1已知椭圆的离心率,过点A(0,b)和B(a,0)的直线与原点的距离为(1)求椭圆的方程;来源:学。科。网Z。X。X。K(2)已知定点E(1,0),若直线y=kx+2(k0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由【思路点拨】(1)直线AB方程为bxayab=0,依题意可得:,由此能求出椭圆的方程(2)假设存在这样的值,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解(2)假设存在这样的值,得(1+3k2)x2+12kx

6、+9=0,=(12k)236(1+3k2)0,设C(x1,y1),D(x2,y2),则而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(1,0),当且仅当CEDE时,学科&网则y1y2+(x1+1)(x2+1)=0,(k2+1)x1x2+(2k+1)(x1+x2)+5=0将代入整理得k=,学科&网经验证k=使得成立综上可知,存在k=使得以CD为直径的圆过点E2.已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于两点,分别为线段的中点,若坐标原点在以为直径的圆上,且,求的取值范围.【思路点拨】(1)结合所给的数

7、据计算可得,所以椭圆的方程为.(2)联立直线与椭圆的方程,集合韦达定理和平面向量数量积的坐标运算法则可得 ,结合离心率的范围可知则的取值范围是.因为,所以,.所以,即.学科&网3.已知椭圆: 过点,且离心率()求椭圆的方程;()椭圆长轴两端点分别为,点为椭圆上异于的动点,直线:与直线分别交于两点,又点,过三点的圆是否过轴上不同于点的定点?若经过,求出定点坐标;若不存在,请说明理由【思路点拨】(1)运用椭圆的离心率公式和点代入椭圆方程,由a,b,c的关系,即可得到椭圆方程;(2)设,由椭圆方程和直线的斜率公式,以及两直线垂直的条件,计算即可得证 4.已知椭圆: 的焦点、在轴上,且椭圆经过,过点的

8、直线与交于点,与抛物线: 交于、两点,当直线过时的周长为()求的值和的方程;()以线段为直径的圆是否经过上一定点,若经过一定点求出定点坐标,否则说明理由。【思路点拨】(1)由的周长为求得a,再根据椭圆经过求得m.(2)设直线方程 ,与抛物线方程联立方程组,消x得关于y的一元二次方程,结合韦达定理,化简以线段为直径的圆方程,按参数n整理,根据恒等式成立条件求出定点坐标 5.已知抛物线顶点在原点,焦点在轴上,抛物线上一点到焦点的距离为3,线段的两端点, 在抛物线上.(1)求抛物线的方程;(2)若轴上存在一点,使线段经过点时,以为直径的圆经过原点,求的值;(3)在抛物线上存在点,满足,若是以角为直角

9、的等腰直角三角形,求面积的最小值.【思路点拨】(1)根据抛物线的定义,丨QF丨=丨QQ1丨,即可求得p的值,即可求得抛物线方程;(2)设AB的方程,代入椭圆方程,由,根据向量数量积的坐标运算及韦达定理,即可求得m的值;(3)设, , ,根据抛物线关于轴对称,取,记, ,则有, ,所以, , ,由,即,进而化简求出,得: , ,即可求得ABD面积的最小值(3)如图所示,设, , ,根据抛物线关于轴对称,取,记, ,则有, ,所以, , ,学科&网又因为是以为顶点的等腰直角三角形,所以,即,将代入得: 6.已知椭圆: ()经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.(1)求椭圆的方程

10、;(2)动直线: (, )交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.【思路点拨】(1)由题设知a= ,所以 ,椭圆经过点P(1, ),代入可得b=1,a=,由此可知所求椭圆方程.(2)首先求出动直线过(0,)点当l与x轴平行时,以AB为直径的圆的方程:x2+(y+)2=;当l与y轴平行时,以AB为直径的圆的方程:x2+y2=1由由此入手可求出点T的坐标(2)首先求出动直线过点.当与轴平行时,以为直径的圆的方程: 当与轴平行时,以为直径的圆的方程: 由解得学科&网即两圆相切于点,因此,所求的点如果存在,只能是,事实上,

11、点就是所求的点.证明如下:当直线垂直于轴时,以为直径的圆过点当直线不垂直于轴,可设直线: 由消去得: 7.如图,曲线由上半椭圆: (, )和部分抛物线: ()连接而成, 与的公共点为, ,其中的离心率为来源:学.科.网Z.X.X.K(1)求, 的值;(2)过点的直线与, 分别交于点, (均异于点, ),是否存在直线,使得以为直径的圆恰好过点,若存在,求出直线的方程;若不存在,请说明理由【思路点拨】(1)在, 的方程中,令,可得,且, 是上半椭圆的左、右顶点,设半焦距为,由及,联立解得;(2)由(1)知,上半椭圆的方程为,由题意知,直线与轴不重合也不垂直,设其方程为(),代入的方程,整理得: ,

12、设点的坐标为,由根公式,得点的坐标为,同理,得点的坐标为由 ,即可得出的值,从而求得直线方程. 8.已知过点的椭圆的左右焦点分别为, 为椭圆上的任意一点,且成等差数列.(1)求椭圆的标准方程;(2)直线交椭圆于两点,若点始终在以为直径的圆外,求实数的取值范围.【思路点拨】(1)由题意,利用等差数列和椭圆的定义求出的关系,再根据椭圆过点,求出的值,即可写出椭圆的标准方程;(2)设,根据题意知,联立方程组,由方程的根与系数的关系求解,再由点在以为直径的圆外,得为锐角, ,由此列出不等式求出的取值范围.(2)设, ,联立方程,消去得:;依题意直线恒过点,此点为椭圆的左顶点, ,由方程的根与系数关系可

13、得, ;可得 ;由,解得, ;由点在以为直径的圆外,得为锐角,即;由, ,;即,整理得, ,解得: 或.实数的取值范围是或.9.已知动点M到点N(1,0)和直线l:x=1的距离相等(1)求动点M的轨迹E的方程;(2)已知不与l垂直的直线l与曲线E有唯一公共点A,且与直线l的交点为P,以AP为直径作圆C判断点N和圆C的位置关系,并证明你的结论【思路点拨】(1)利用抛物线的定义,即可求动点M的轨迹E的方程;(2)由题意可设直线l:x=my+n,由可得y24my4n=0,求出A,P的坐标,利用向量的数量积,即可得出结论所以NANP,所以点N在以PA为直径的圆C上10.已知抛物线C1:y2=2px(p

14、0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上()求抛物线C1的方程;()已知椭圆C2:=1(mn0)的一个焦点与抛物线C1的焦点重合,且离心率为直线l:y=kx4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围【思路点拨】(1)设点G的坐标为(x0,y0),列出关于x0,y0,p的方程组,即可求解抛物线方程(2)利用已知条件推出m、n的关系,设(x1,y1)、B(x2,y2),联立直线与椭圆方程,利用韦达定理以及判别式大于0,求出K的范围,通过原点O在以线段AB为直径的圆的外部,推出0,然后求解k的范围即可由0,即(32k)2416(4k2+3)0,k或k(10分)原点O在以线段AB为直径的圆的外部,则0,=x1x2+y1y2=x1x2+(kx14)(kx24)=(k2+1)x1x24k(x1+x2)+16=(k2+1)4k+16=0,解得:k由、得实数k的范围是k或k,k的取值范围(,)(,)(12分)来源:Zxxk.Com

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高中教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号