普通高等学校招生全国统一考试数学理天津卷含解析.doc

上传人:cao****hui 文档编号:127505714 上传时间:2020-04-03 格式:DOC 页数:16 大小:1.81MB
返回 下载 相关 举报
普通高等学校招生全国统一考试数学理天津卷含解析.doc_第1页
第1页 / 共16页
普通高等学校招生全国统一考试数学理天津卷含解析.doc_第2页
第2页 / 共16页
普通高等学校招生全国统一考试数学理天津卷含解析.doc_第3页
第3页 / 共16页
普通高等学校招生全国统一考试数学理天津卷含解析.doc_第4页
第4页 / 共16页
普通高等学校招生全国统一考试数学理天津卷含解析.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《普通高等学校招生全国统一考试数学理天津卷含解析.doc》由会员分享,可在线阅读,更多相关《普通高等学校招生全国统一考试数学理天津卷含解析.doc(16页珍藏版)》请在金锄头文库上搜索。

1、 2015年普通高等学校招生全国统一考试数学理试题(天津卷,含解析)第I卷注意事项: 1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2、本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集 ,集合 ,集合 ,则集合 (A) (B) (C) (D) 【答案】A【解析】试题分析:,所以,故选A.考点:集合运算.(2)设变量 满足约束条件 ,则目标函数的最大值为(A)3 (B)4 (C)18 (D)40【答案】C 考点:线性规划.(3)阅读右边的程序框图,运行相应的程序,则输

2、出S的值为(A) (B)6(C)14(D)18【答案】B【解析】试题分析:模拟法:输入; 不成立; 不成立 成立 输出,故选B.考点:程序框图.(4)设 ,则“ ”是“ ”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A考点:充分条件与必要条件.(5)如图,在圆 中, 是弦 的三等分点,弦 分别经过点 .若 ,则线段 的长为(A) (B)3 (C) (D) 【答案】A【解析】试题分析:由相交弦定理可知,又因为是弦的三等分点,所以,所以,故选A.考点:相交弦定理.(6)已知双曲线 的一条渐近线过点 ,且双曲线的一个焦点在抛物线 的准线上,则双曲线的

3、方程为(A) (B)(C)(D)【答案】D考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质.(7)已知定义在 上的函数 ( 为实数)为偶函数,记 ,则 的大小关系为(A) (B) (C) (D) 【答案】C【解析】试题分析:因为函数为偶函数,所以,即,所以所以,故选C.考点:1.函数奇偶性;2.指数式、对数式的运算.(8)已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是(A) (B) (C)(D)【答案】D【解析】试题分析:由得,所以,即,所以恰有4个零点等价于方程有4个不同的解,即函数与函数的图象的4个公共点,由图象可知.考点:1.求函数解析式;2.函数与方程

4、;3.数形结合.第II卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9) 是虚数单位,若复数 是纯虚数,则实数的值为 .【答案】【解析】试题分析:是纯度数,所以,即.考点:1.复数相关定义;2.复数运算.(10)一个几何体的三视图如图所示(单位:),则该几何体的体积为 . 【答案】【解析】试题分析:由三视图可知,该几何体是中间为一个底面半径为,高为的圆柱,两端是底面半径为,高为的圆锥,所以该几何体的体积.考点:1.三视图;2.旋转体体积.(11)曲线 与直线 所围成的封闭图形的面积为 .【答案】

5、【解析】试题分析:两曲线的交点坐标为,所以它们所围成的封闭图形的面积.考点:定积分几何意义.(12)在 的展开式中,的系数为 .【答案】考点:二项式定理及二项展开式的通项.(13)在 中,内角 所对的边分别为 ,已知的面积为 , 则的值为 .【答案】【解析】试题分析:因为,所以,又,解方程组得,由余弦定理得,所以.考点:1.同角三角函数关系;2.三角形面积公式;3.余弦定理.(14)在等腰梯形 中,已知 ,动点 和 分别在线段 和 上,且, 则的最小值为 .【答案】【解析】试题分析:因为, 当且仅当即时的最小值为.考点:1.向量的几何运算;2.向量的数量积;3.基本不等式.三、解答题:本大题共

6、6小题,共80分解答应写出文字说明,证明过程或演算步骤15. (本小题满分13分)已知函数,(I)求最小正周期;(II)求在区间上的最大值和最小值.【答案】(I); (II) ,.考点:1.两角和与差的正余弦公式;2.二倍角的正余弦公式;3.三角函数的图象与性质.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;(II)设X为选出

7、的4人中种子选手的人数,求随机变量X的分布列和数学期望.【答案】(I) ; (II) 随机变量的分布列为【解析】试题分析:(I)由古典概型计算公式直接计算即可; (II)先写出随机变量的所有可能值,求出其相应的概率,即可求概率分布列及期望.试题解析:(I)由已知,有所以事件发生的概率为.(II)随机变量的所有可能取值为所以随机变量的分布列为所以随机变量的数学期望考点:1.古典概型;2.互斥事件;3.离散型随机变量的分布列与数学期望.17. (本小题满分13分)如图,在四棱柱中,侧棱,且点M和N分别为的中点.(I)求证:;(II)求二面角的正弦值;(III)设E为棱上的点,若直线NE和平面ABC

8、D所成角的正弦值为,求线段的长【答案】(I)见解析; (II) ; (III) .【解析】试题分析:以为原点建立空间直角坐标系(I)求出直线的方向向量与平面的法向量,两个向量的乘积等于即可;(II)求出两个平面的法向量,可计算两个平面所成二面角的余弦值的大小,再求正弦值即可;(III) 设,代入线面角公式计算可解出的值,即可求出的长.试题解析:如图,以为原点建立空间直角坐标系,依题意可得,又因为分别为和的中点,得.(I)证明:依题意,可得为平面的一个法向量,由此可得,又因为直线平面,所以平面(II),设为平面的法向量,则,即,不妨设,可得,设为平面的一个法向量,则,又,得,不妨设,可得因此有,

9、于是,所以二面角的正弦值为.(III)依题意,可设,其中,则,从而,又为平面的一个法向量,由已知得,整理得,又因为,解得, 所以线段的长为.考点:1.直线和平面平行和垂直的判定与性质;2.二面角、直线与平面所成的角;3.空间向量的应用.18. (本小题满分13分)已知数列满足,且成等差数列.(I)求q的值和的通项公式;(II)设,求数列的前n项和.【答案】(I) ; (II) .【解析】试题分析:(I)由得 先求出,分为奇数与偶数讨论即可;(II)求出数列的通项公式,用错位相减法求和即可.试题解析:(I) 由已知,有,即,所以,又因为,故,由,得,当时,当时,所以的通项公式为考点:1.等差中项

10、定义;2.等比数列及前项和公式.3.错位相减法.19. (本小题满分14分)已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线FM被圆截得的线段的长为c,.(I)求直线FM的斜率;(II)求椭圆的方程;(III)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.【答案】(I) ; (II) ;(III) .【解析】试题分析:(I) 由椭圆知识先求出的关系,设直线直线的方程为,求出圆心到直线的距离,由勾股定理可求斜率的值; (II)由(I)设椭圆方程为,直线与椭圆方程联立,求出点的坐标,由可求出,从而可求椭圆方程.(III)设出直线:,与椭圆方程联立,求

11、得,求出的范围,即可求直线的斜率的取值范围.试题解析:(I) 由已知有,又由,可得,设直线的斜率为,则直线的方程为,由已知有,解得.(II)由(I)得椭圆方程为,直线的方程为,两个方程联立,消去,整理得,解得或,因为点在第一象限,可得的坐标为,由,解得,所以椭圆方程为(III)设点的坐标为,直线的斜率为,得,即,与椭圆方程联立,消去,整理得,又由已知,得,解得或,设直线的斜率为,得,即,与椭圆方程联立,整理可得.当时,有,因此,于是,得当时,有,因此,于是,得综上,直线的斜率的取值范围是考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.20. (本小题满分14分)

12、已知函数,其中.(I)讨论的单调性;(II)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(III)若关于的方程有两个正实根,求证: 【答案】(I) 当为奇数时,在,上单调递减,在内单调递增;当为偶数时,在上单调递增,在上单调递减. (II)见解析; (III)见解析.试题解析:(I)由,可得,其中且,下面分两种情况讨论:(1)当为奇数时:令,解得或,当变化时,的变化情况如下表:所以,在,上单调递减,在内单调递增.(2)当为偶数时,当,即时,函数单调递增;当,即时,函数单调递减.所以,在上单调递增,在上单调递减. (II)证明:设点的坐标为,则,曲线在点处的切线方程为,即,令,即,则由于在上单调递减,故在上单调递减,又因为,所以当时,当时,所以在内单调递增,在内单调递减,所以对任意的正实数都有,即对任意的正实数,都有. (III)证明:不妨设,由(II)知,设方程的根为,可得,当时,在上单调递减,又由(II)知可得.类似的,设曲线在原点处的切线方程为,可得,当,即对任意,设方程的根为,可得,因为在上单调递增,且考点:1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.17

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号