电阻炉设计方案

上传人:l**** 文档编号:127495394 上传时间:2020-04-02 格式:DOCX 页数:48 大小:1.07MB
返回 下载 相关 举报
电阻炉设计方案_第1页
第1页 / 共48页
电阻炉设计方案_第2页
第2页 / 共48页
电阻炉设计方案_第3页
第3页 / 共48页
电阻炉设计方案_第4页
第4页 / 共48页
电阻炉设计方案_第5页
第5页 / 共48页
点击查看更多>>
资源描述

《电阻炉设计方案》由会员分享,可在线阅读,更多相关《电阻炉设计方案(48页珍藏版)》请在金锄头文库上搜索。

1、电阻炉设计方案1.1课题背景和意义从20世纪20年代开始,电阻炉就在工业上得到使用。随着科学技术的发展,电阻炉被广泛的应用在冶金、机械、石油化工、电力等工业生产中,在很多生产过程中,温度的测量和控制与生产安全、生产效率、产品质量、能源节约等重大技术经济指标紧紧相连。因此各个领域对电阻炉温度控制的精度、稳定性、可靠性等要求也越来越高,温度测控制技术也成为现代科技发展中的一项重要技术。温度控制技术发展经历了三个阶段:l、定值开关控制;2、PID控制;3、智能控制。定值开关控制方法的原理是若所测温度比设定温度低,则开启控制开关加热,反之则关断控制开关。其控温方法简单,没有考虑温度变化的滞后性、惯性,

2、导致系统控制精度低、超调量大、震荡明显。PID控制温度的效果主要取决于P、I、D三个参数。PID控制对于确定的温度系统,控制效果良好,但对于控制大滞后、大惯性、时变性温度系统,控制品质难以保证。电阻炉是由电阻丝加热升温,靠自然冷却降温,当电阻炉温度超调时无法靠控制手段降温,因而电阻炉温度控制具有非线性、滞后性、惯性、不确定性等特点。目前国内成熟的电阻炉温度测控系统以PID控制器为主,PID控制对于小型实验用电阻炉控制效果良好,但对于大型工业电阻炉就难以保证电阻炉控制系统的精度、稳定性等。智能控制是一类无需人的干预就能独立驱动智能机械而实现其目标的自动控制,随着科学技术和控制理论的发展,国外的温

3、度测控系统发展迅速,实现对温度的智能控制。应用广泛的温度智能控制的方法有模糊控制、神经网络控制、专家系统等,具有自适应、自学习、自协调等能力,保证了控制系统的控制精度、抗干扰能力、稳定性等性能。比较而言,国外温度控制系统的性能要明显优于国内,其根本原因就是控制算法的不同。本文的研究,以电阻炉为控制对象,以单片机AT89C51为硬件核心元件,设计一种新型的温度测控系统,使其具有硬件电路简单、系统性能优良等优点。1.2 国内外温度控制系统的发展与现状国外先进国家设计的各种温度控制自动化水平较高,装备有完善的检测仪表和计算机控制系统。其计算机控制系统已采用集散系统和分布式系统的形式,大部分配有先进的

4、控制算法,能够获得较好的工艺性能指标。而国内大多数采用仪表控温,由于控制设备精度低,使产品质量受到很大影响。很多企业由于种种原因,尚无能力购置先进的温度自动控制系统。随着国内外工业的日益发展,温度检测技术也有了不断的进步。温度测量系统主要由两部分组成,一部分是传感器,它将温度信号转换为电信号。另一部分是电子装置,它主要完成对信号的接收、处理、对测点进行控制、温度显示等功能。对应于不同的温度段及测量精度要求,测温装置也不尽相同,从传感器方面看,已出现有各种金属材料、非金属材料、半导体材料制成的传感器,也有红外传感器。仪器本身也趋向小型化,多采用集成度较高的芯片或元件组成电路。对于测点较多,并具有

5、报警、巡测、控制等多功能测温装置,一般采用单片机电路。目前的温度检测技术原理很多,大致包括以下几种:(1)物体热胀冷缩原理(2)热电效应(3)热阻效应(4)利热辐射原理。传统的温度传感器(如,热电偶、铂电阻、双金属开关等)虽然有着各自不可替代的优点,但由于自身因自热效应影响了测量精度,从而制约了它们在微型化高端电子产品中的应用。与之相比较,半导体温度传感器具有灵敏度高、体积小、功耗低、时间常数小、自热温升小、抗干扰能力强等诸多优点,无论是电压、电流还是频率输出,在相当大的温度范围内( - 55150 )都与温度成线性关系,适合在集成电路系统中应用。目前,半导体温度传感器工作的温度范围还限于-

6、50150 。未来主要的研究方向将是如何扩大它的温度适用范围,以及智能化、网络化等方面。 近年来,在温度检测技术领域中,多种新的检测原理与技术的开发应用己取得了具有实用性的重大进展。新一代温度检测元件正在不断出现和完善化,主要包括以下几种。(1)晶体管温度检测元件(2)集成电路温度检测元件(3)核磁共振温度检测器(4)热噪声温度检测器(5)石英晶体温度检测器(6)光纤温度检测器(7)激光温度检测器。目前国内外的温度控制方式越来越趋向于智能化,温度测量首先是由温度传感器来实现的。测温仪器由温度传感器和信号处理两部分组成。温度测量的过程就是通过温度传感器将被测对象的温度值转换成电的或其它形式的信号

7、,传递给信号处理电路进行信号处理转换成温度值显示出来。温度传感器随着温度变化而引起变化的物理参数有: 膨胀、电阻、电容、热电动势,磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断出现,目前,国内外通用的温度传感器及测温仪大致有以下几种: 热膨胀式温度计、电阻温度计、热电偶、辐射式测温仪表、石英温度传感器测温仪。目前市场上大致有3类温度控制系统分别是:单片机温度控制系统、嵌入式温度控制系统、基于SOPC的温度控制系统。它们有各自的优点与缺点,我们可以根据具体要求进行选择。单片机温度自动控制系统中,材料温度由热电阻测量,信号通过放大器放大,毫伏信号放大后由A/D转换成相应

8、的数字量,再通过光电耦合器,进入主机电路。由主机进行数据处理,判断分析,再输出数字控制量,去控制加热功率,从而实现对温度的控制。同时,超过上下限时进行自动报警,控制中自动显示温度值。基于ARM的测控系统主要由测温器件、ARM微处理器、键盘及显示单元组成。测温器件是用作温度的采集。ARM微处理器是系统的核心部分,它用来控制整个系统的工作流程。整个系统的硬件部分分为五个部分,即电路部分、检测电路部分、控制及显示电路部分以及输出控制。系统工作原理为ARM微处理器向传感器发出信号,启动温度传感器采集温度数据,温度传感器采集完一次数据后,将模拟量转换为ARM处理器能识别的数值信号。ARM微处理器实时扫描

9、进行数据的采集,对采集到的信号进行处理。基于ARM的温度控制系统通过合理地搭建ARM嵌入式平台,采用PID自整定算法,与常规PID控制算法比较,使被控对象的温度波动大幅度减小,具有响应时间短、超调量小、控制精度高、稳定性好、智能化等优点。在进行软硬件调试的基础上,应用于热电系数测量仪中,经测试,此控制系统工作稳定可靠,满足了系统温度控制精度要求,具有较高的实用价值。市场上大多数的温度自动控制系统是基于单片机或ARM系列芯片来设计的。对比这两种设计,基于单片机的温度自动控制系统的使用更方便,价格低廉,易于实现,因此受到广泛使用。1.3 温度控制系统在国内外的应用实例通过网上查询,翻阅图书了解到目

10、前国内外市场单片机为核心的温度控制系统很多,而且方便灵活,且应用面比较广,可用于工业上的加热炉、热处理炉,在生活中的应用也比较广泛,如热水器,室温控制,农业中的大棚温度控制。以上出现的温度控制系统产品,根据其系统组成、使用技术、功能特点、技术指标。选出其中具有代表性的几种如下:(1)虚拟仪器温室大棚温度控制系统在农业应用方面虚拟仪器大棚温度控制系统是一种比较智能,经济的方案,适用于大力推广,该系统能够对大棚内的温度进行采集,然后再进行比较,通过比较对大棚内的温度是否超过温度限制进行分析,如果超过温度限制,温度报警系统进行报警,来通知管理员。(2)电烤箱温度控制系统该方案采用美国TI公司生产的F

11、LASH型超低功耗16位单片机MSP430F123为核心器件,通过热电偶监测系统温度,用集成传感器AD590作为温度测量器件利用该芯片内置的比较器完成高精度AD信号采样,根据温度的变化情况,通过单片机编写闭环算法,从而成功地实现了对温度控制的测量和自动控制功能。其温度范围较低,大概在0-250之间,具有精度高,相应速度开等特点。(3)小型热水炉温度控制系统该系统解决了北方冬季分散取暖采用人工定时烧水供热耗煤量大,浪费人力温度变化大的问题。设计方案硬件方面采用MCS-51系列8031单片机为核心,扩展程序存储器2732,AD590温度检测元件测量环境温度和供水温度,AD0809进行模数转换,同向

12、驱动器7407光电耦合器及9103的功放完成对点击的控制。软件方面建立了供暖系统的控制系统数学模型。本系统的硬件电路简单,程序易于实现。它可用于一台或多台小型取暖热水锅炉的温度控制,可是居室温度基本恒定,节煤节电省人力。(4)单片机控制电阻炉温度系统该系统由8098单片机,2764/6264存贮器, 8279键盘显示, pp40微打、双向晶闸管过零触发控制, 掉电检测与保护, 故障声光报警、自动与手动转换等电路组成。控制回路采用Dahlin或积分分离增量式PID算法。系统具有结构先进合理、功能完善、控制精度高、杭干扰能力强、通用性好、价格低, 使用方便等特点, 具有很好的社会经济效益。(5)单

13、片机在水温控制中的应用传统的公众浴室采用双回路冷热水分开供给的系统, 使用中需经常调节阀门, 阀门损坏率较高。应用单片机技术对浴室水温进行自动控制, 水温可人工或自动设定, 这对传统的浴室供水系统是一种突破。电路大量采用新型集成电路, 提高了系统的可靠性。(6)电阻炉温度单片机控制系统该系统把二端式半导体集成温度传感器AD590置于一个封闭严密的箱内的中心位置, 通过ADC0804与单片机MCS-51接口, 控制电阻。因此, 系统应具有对工业现场数据进行采集、处理的功能。1.4 温度控制系统模型单片机应用系统的硬件电路设计就是为本单片机温控系统选择合适的、最优的系统配置,即按照系统功能要求配置

14、外围设备,如键盘、显示器、打印机、A/D转换器、设计合适的接口电路等。系统设计应本着以下原则:(1) 尽可能选择典型电路,并符合单片机常规用法。本设计采用了典型的显示电路、A/D转化电路,为硬件系统的标准化、模块化打下良好的基础。(2) 硬件结构应结合应用软件考虑。软件能实现的功能尽可能由软件实现,以简化硬件结构。由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。由于本设计的响应时间要求不高,所以有一些功能可以用软件编程实现,如键盘的去抖动问题。(3) 系统中的相关器件要尽可能做到性能匹配。系统中所有芯片都应尽可能选择低功耗产品。第2章 系统总体方案设计本设计要实现对电阻炉温度

15、的检测与控制,本系统由单片机AT89C51、ADC0808转换器及报警电路、显示电路、温度控制电路等部分组成, 本系统功能由硬件和软件两大部分协调完成,硬件部分主要完成传感器信号的采集处理,信息的显示等;软件主要完成对采集的温度信号进行处理及显示控制等功能。系统结构框图如图2-1所示:液晶显示AT89C51单片机传感器A/D转换电阻炉报警电路温度控制图2-1 系统结构框图在系统中,利用ADC0808将测得的电压信号经过转换成与炉温相对应的数字信号进入单片机,单片机进行数据处理后,通过LCD1602液晶显示器显示温度并判断是否报警,同时将温度与设定温度比较,由设定的控制算法计算出控制量,根据控制

16、量通过控制固态继电器的导通和关闭从而控制电阻丝的导通时间,以实现对炉温的控制。电阻炉内温度小于280度电阻丝全速加热,超过300度则进入降温,以使温度控制在280-300度之间。第3章 硬件设计单片机应用系统的硬件电路设计就是为本单片机温控系统选择合适的、最优的系统配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、设计合适的接口电路等。系统设计应本着以下原则:(1) 尽可能选择典型电路,并符合单片机常规用法。本设计采用了典型的显示电路,为硬件系统的标准化、模块化打下良好的基础。(2) 硬件结构应结合应用软件方案一并考虑。软件能实现的功能尽可能由软件实现,以简化硬件结构。由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。由于本设计的响应时间要求不高,所以有一

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作范文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号