安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理

上传人:tang****xu4 文档编号:126856550 上传时间:2020-03-28 格式:DOC 页数:9 大小:261.50KB
返回 下载 相关 举报
安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理_第1页
第1页 / 共9页
安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理_第2页
第2页 / 共9页
安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理_第3页
第3页 / 共9页
安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理_第4页
第4页 / 共9页
安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理》由会员分享,可在线阅读,更多相关《安徽省长丰县实验高级中学高中数学必修五教案:1.1.2 余弦定理(9页珍藏版)》请在金锄头文库上搜索。

1、1.1.2余弦定理项目内容课题 1.1.2余弦定理(共 1 课时)修改与创新教学目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法;2.会利用余弦定理解决两类基本的解三角形问题;3.能利用计算器进行运算.二、过程与方法1.利用向量的数量积推出余弦定理及其推论;2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一教学重、难点教学重点 余弦定理的发现和证明过程及其基本应用. 教学难点 1.向量知识在证明余

2、弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路;3.勾股定理在余弦定理的发现和证明过程中的作用教学准备投影仪、幻灯片两张第一张:课题引入图片(记作1.1.2A)如图(1),在RtABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a?第二张:余弦定理(记作1.1.2B)余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一: a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC,形式二:cosA=,cosB=,cosC=教学过程导入新课师 上一节,我们一起

3、研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A.师 由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么

4、在RtBDC中,边A可利用勾股定理用CD、DB表示,而CD可在RtADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在RtADC内求解.解:过C作CDAB,垂足为D,则在RtCDB中,根据勾股定理可得A2=CD2+BD2.在RtADC中,CD2=B2-AD2,又BD2=(C-AD)2=C2-2CAD+AD2,A2=B2-AD2+C2-2CAD+AD2=B2+C2-2CAD.又在RtADC中,AD=BCOsA,a2=b2+c2-2abcosA.类似地可以证明b2=c2+a2-2cacosB.c2=a2+b2-2abcosC.另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2

5、=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B)推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.在幻灯片1.1.2B中我们可以看到它的两种表示形式:形式一:a2=b2+c2-2bccosA,b2=c+a2-2cacosB,c2=a2+b2-2abcosC.形式二:,.师 在余弦定理中,令C =90时,这时cosC=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具

6、性作用. 合作探究2.向量法证明余弦定理(1)证明思路分析师 联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边C由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题由于涉及边长问题,那么可以与哪些向量知识产生联系呢?生 向量数量积的定义式ab=|a|b|cos,其中为A、B的夹角.师 在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含

7、有角C,则构造这一数量积以使出现COsC.同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在ABC中,设AB、BC、CA的长分别是c、a、b.由向量加法的三角形法则,可得,即B2=C2+A2-2ACCOsB.由向量减法的三角形法则,可得,即a2=b2+c2-2bccosA.由向量加法的三角形法则,可得,即c2=a2+b2-2abcosC. 方法引导(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则.(2)在证明过程中应强调学生注意的是两向量夹角的确定,与属于同起点向量,则夹角为A;与是首尾相接,则夹角为角B的补角180-B;与是同终点,则夹角仍

8、是角C. 合作探究师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:.师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?生(学生思考片刻后会总结出)若ABC中,C =90,则cosC=0,这时c2=a2+b2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的

9、平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角从上可知,余弦定理可以看作是勾股定理的推广现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B)通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一,课本P8例4属这类情况.(2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角

10、形所产生的判断取舍等问题.接下来,我们通过例题来进一步体会一下.例题剖析【例1】在ABC中,已知B=60 cm,C=34 cm,A=41,解三角形(角度精确到1,边长精确到1 cm).解:根据余弦定理,a2=b2+c2-2bccosA=602+342-26034cos413 600+1 156-4 0800.754 71 676.82,所以A41 cm.由正弦定理得sinC=0.544 0,因为C不是三角形中最大的边,所以C是锐角.利用计数器可得C33,B=180-A-C=180-41-33=106.【例2】在ABC中,已知a =134.6 cm,b=87.8 cm,c =161.7 cm,解

11、三角形.解:由余弦定理的推论,得cosA=0.554 3,A5620;cosB=0.839 8,B3253;C =180-(A+B)=180-(5620+3253)=9047. 知识拓展补充例题:【例1】在ABC中,已知a=7,b=10,c=6,求A、B和C.(精确到1)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:,A44.cosC=0.807 1,C36.B=180-(A+C)=180-(44+36)=100. 教师精讲 (1)为保证求解结果符合三角形内角和定理,即三角形内角和为180,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2

12、)对于较复杂运算,可以利用计算器运算.【例2】在ABC中,已知a=2.730,b=3.696,c=8228,解这个三角形(边长保留四个有效数字,角度精确到1).分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0180之间,余弦有唯一解,故用余弦定理较好.解:由c2=a2+b2-2abcosC=2.7302+3.6962-22.7303.696cos8228,得c4.297

13、.cosA=0.776 7,A392.B=180-(A+C)=180-(392+8228)=5830. 教师精讲通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦.【例3】在ABC中,已知A=8,B=7,B=60,求C及SABC.分析:根据已知条件可以先由正弦定理求出角A,再结合三角形内角和定理求出角C,再利用正弦定理求出边C,而三角形面积由公式SABC=acsinB可以求出.若用余弦定理求C,表面上缺少C,但可利用余弦定理b2=c2+a2-2cacosB建立关于C的方程,亦能达到求C的目的.下面给出两种解法.解法

14、一:由正弦定理得,A1=81.8,A2=98.2,C1=38.2,C2=21.8.由,得c1=3,c2=5,SABC=或SABC=.解法二:由余弦定理得b2=c+a2-2cacosB,72=c+82-28ccos60,整理得c2-8c+15=0,解之,得c1=3,c2=5.SABC=或SABC= . 教师精讲在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之.课堂练习1.在ABC中:(1)已知c=8,b=3,b=60,求A;(2)已知a=20,bB=29,c=21,求B;(3)已知a=33,c=2,b=150,求B;(4)已知a=2,b=2,c=3+1,求A.解: (1)由a2=b2+c2-2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号