2空气动力学基础第2章 流体动力学课件

上传人:亦明 文档编号:126379942 上传时间:2020-03-24 格式:DOC 页数:28 大小:213.94KB
返回 下载 相关 举报
2空气动力学基础第2章 流体动力学课件_第1页
第1页 / 共28页
2空气动力学基础第2章 流体动力学课件_第2页
第2页 / 共28页
2空气动力学基础第2章 流体动力学课件_第3页
第3页 / 共28页
2空气动力学基础第2章 流体动力学课件_第4页
第4页 / 共28页
2空气动力学基础第2章 流体动力学课件_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《2空气动力学基础第2章 流体动力学课件》由会员分享,可在线阅读,更多相关《2空气动力学基础第2章 流体动力学课件(28页珍藏版)》请在金锄头文库上搜索。

1、2空气动力学基础第2章 流体动力学课件 空气动力学基础沈阳航空航天大学航空航天工程学院飞机设计教研室xx年3月第22章流体动力学和运动学基础第第2章流体运动学和动力学基础2.1描述流体运动的方法2.2流体微团运动的分析2.3理想流体运动微分方程组?2.3.1连续方程?2.3.2Euler运动微分方程组?2.3.3Bernoulli积分及其物理意义?2.3.4Bernoulli方程的应用2.4流体运动积分方程组?2.4.1Lagrange型积分方程?2.4.2Reynolds输运方程?2.4.3Euler型积分方程2.5环量与涡2.1.1拉格朗日方法与Euler方法根据连续介质的假设,流体是由质

2、点组成,无空隙地充满所占据的空间。 对于无数多的流体质点,当其发生运动时,如何正确描述和区分各流体质点的运动行为,将是流体运动学必须回答的问题。 描述流体运动的方法有两种。 11、Lagrange方法(拉格朗日方法,质点法)在该方法中,观察者着眼于个别流体质点的流动行为,通过跟踪每个质点的运动历程,从而获得整个流场的运动规律。 (引出迹线的概念)2.1描述流体运动的方法用如下方程描述质点(a,b,c)所经历的轨迹x(a,b,c,t),y(a,b,c,t),z(a,b,c,t)其中,a,b,c为流体质点的标识符,用于区分和识别各质点,一般可用质点的初始坐标表示;t表示时间。 a.b.c.t称为拉

3、格朗日变数。 a.b.c给定,表示指定质点的轨迹。 t给定,表示在给定时刻不同质点的空间位置。 上式就是质点(a,b,c)的轨迹参数方程,三式消去得轨迹?c b a,ott?z y x,2.1.1拉格朗日方法与Euler方法因为质点的坐标位臵是时间t的函数,对于给定的流体质点(a a,b b,c c),速度表达式是流体质点的加速度为tt cb azwtt cb ayvtt cb a xu?),(,),(,), (222222),(,),(,),(tt cb azatt cb ayatt cbaxazyx?2.1.1拉格朗日方法与Euler方法这里使用偏导数是因为坐标同时是时间和质点标号的函数,

4、求导时要求a,b,c固定不变,即求导是针对同一流体质点的。 流体质点的其它物理量也都是a,b,c,t的函数。 例如流体质点(a,b,c)的温度可表为T(a,b,c,t) 22、Euler方法(Euler方法,空间点法,流场法)?Euler方法的着眼点不是流体质点而是空间点。 考察不同流体质点通过空间固定点的流动行为,通过记录不同空间点流体质点经过的运动情况,从而获得整个流场的运动规律。 ?在固定空间点看到的是不同流体质点的运动变化,无法像拉格朗日方法那样直接记录同一质点的时间历程。 2.1.1拉格朗日方法与Euler方法x.y.z.t称为Euler变量,是四个相互独立的变量。 ?x,y,z给定

5、,t变化,表示不同时刻不同流体质点通过同一空间点的速度。 ?t给定,x.y.z变化,表示给定时刻,不同流体质点通过不同空间点的速度,给定速度场。 ?),(),(),(t z y x wk wj vi u V t z y x vt z y x u?2.1.1拉格朗日方法与Euler方法在固定空间点记录流过的不同质点的速度?上式既描述了某一瞬间各点的流动情况,也描述了不同瞬间的流动参数在各点的分布情况。 这种描述法称为Euler法。 ?请注意,x,y,z,t是四个独立变数。 如果不另外赋以意义,则不能有这类的表达式。 、dt dx22dt xd?应该指出,速度场的表达本质上指的是该瞬时恰好通过该空

6、间点的流体微团所具有的速度。 2.1.1拉格朗日方法与Euler方法?),(),(),(t z y xwk wj vi uV t z y x vt z y x u?流场flow field?一个布满了某种物理量的空间称为场?流体运动所占据的空间称为流场?除速度场之外,还有压强场。 在高速流动时,气流的密度和温度也随流动有变化,那就还有一个密度场和温度场。 这都包括在流场的概念之内。 ),(),(),(t z y xT Tt z y xt z y xp p?如果场只是空间坐标的函数而与时间无关则称为定常场,否则为非定常场,例如,定常速度场的表达为),(),(),(z y xw wz y x v

7、vz y x u u?2.1.1拉格朗日方法与Euler方法Euler观点下如何表达加速度?如下44图来定性描述引起各处速度变化的原因.1.流体质点从A A流到B B速度不变;.2.A A点与B B点因水位下降引起速度同时减小;.3.流体质点从A A流到B B点,因管道收缩引起速度增加;.4.流体质点从A A流到B B点,因水位下降和管道收缩引起速度的变化。 2.1.2Euler法的加速度表达式?水位下降-流场的非定常性,?管道收缩-流场的不均匀性。 引起流体质点速度的变化主要以上两方面的贡献用Euler法来描述一般的非定常流场时,关于加速度要强调两点。 ?A A(x x,y y,z z)点上

8、t t瞬时的流体微团的速度是时间的函数,所以速度可以随时间变化。 ?原在A点的微团经t后到了B点,若B点的速度与A A点的不同,那么由于迁移,它也会有速度的变化。 2.1.2Euler法的加速度表达式2.1.2Euler法的加速度表达式设在t t瞬时,位于A A(x x,y y,z z)点的一个微团具有速度u u,v v,w w。 经t时间后,该微团移到),(t wz tv y t ux?令),(t z y x u u?经t之后,u变成u+u u:),(t tt wz tv yt ux uuu?)()(),(t ottut wzutvyut uxut z y x u?将变化前后的速度表达相减,

9、略去高阶项,仅保留一阶项,得得zuwyuvxuututu?此式右侧第一项是微团在(x,y,z)处其速度随时间的变化率,即当地加速度。 后三项是由于微团流向速度不相同的邻点而出现的速度变化率,即迁移加速度。 注意上式并非全导数的表达(在微积分中当复合函数只是一个自变量t的函数时才有全导数),因为在Euler观观点下x、y、z等与时间t无关,不能写出dx/dt的表达。 2.1.2Euler法的加速度表达式算子zwyvxut?Material derivative往往用D/Dt这样一个符号来表示。 这个导数称为随流体运动的导数,或称随体导数、实质导数或物质导数。 zuwyuvxuutuDtDu?从而

10、上述加速度可以写成同理zvwyvvxvutvDtDv?zwwywvxwutwDtDw?2.1.2Euler法的加速度表达式需要指出,上述加速度仍然是空间坐标和时间坐标四个独立变量(x,y,z,t)的函数zwwywvxwutwDtDwt z y xazvwyvvxvutvDtDvt z y xazuwyuvxuutuDtDut z y xazyx?),(),(),(2.1.2Euler法的加速度表达式将上三式分别乘再相加可得加速度表达的向量式),(k ji?V VtVDtVDk aj ai at z y xaz y x?)(),(?kzjyix?Hamilton算子随体导数算子除可作用于速度外,

11、对流场中其它变量也成立。 zwyvxut DtD?zpwypvxputpDtDp?如对于压强p,有Remark由于在Euler观点下,x,y,z,t是四个独立变量,一般不能写出dx/dt的表达,因此上述表达并非数学上的全导数。 但在物理上,上式仍然表示质点压强在运动过程中的时间变化率,只是在场的观点下将这个变化率写为当地变化率和迁移变化率称为随体导数。 2.1.2Euler法的加速度表达式因此Euler法与拉格朗日方法表示的加速度实质上是一致的,据此我们也可以利用拉格朗日观点下对流体质点求全导数得到质点的加速度后,再转化为Euler法的加速度表达。 例在拉格朗日观点下沿轨迹线对质点速度求全导数

12、得流体质点的加速度为tzzutyyutxxutudtdudtx d?222.1.2Euler法的加速度表达式Euler法表示的流场速度和加速度实质上显然是指该瞬时恰好通过该点的流体质点所具有的速度和加速度欧拉拉格朗日欧拉拉格朗日),(,),(22t z y xadtx dtzy x udtdxx?代入即得Euler法下的加速度表达zuwyuvxuutut zy xax?),(在不引起误会的条件下,也有将随体导数表为的。 随体导数与全导数实质上是瞬时统一的,前者采用场的表示方法,后者采用质点运动学的表示方法。 DtDdtd由于拉格朗日法与Euler法下的速度关系为欧拉欧拉欧拉),(,),(,),

13、(tzy xwdtdzt zy xvdtdyt zy x udtdx?2.1.2Euler法的加速度表达式譬如像直圆管中的定常层流(如下图)那样一种实际流动,u=u(y y)。 当地加速度和迁移加速度都是零。 迁移加速度中的任何一项都是速度分量与同一方向的导数之乘积,或称沿速度方向的导数。 因此只有上述两项都不为零才可能存在迁移加速度,因此也将称为对流导数。 2.1.2Euler法的加速度表达式zwyvxu V?根据上述分析可得出以下各图中Euler法的加速度表达式。 2.1.2Euler法的加速度表达式人们希望用一些曲线将流场上的流动情况表现出来。 在某一瞬间看流场的话,从某点出发,顺着这一

14、点的速度指向画一个微小的距离到达邻点,再按邻点在同一瞬间的速度指向再画一个微小距离,一直画下去便得一条曲线。 这条某瞬时的空间曲线,其切线都和该点的微团速度指向相一致。 这样的空间曲线称为流线,这样的线可以画无数条。 2.1.3流线、流管、流面与流量时间t固定或流线上的切线切线方向数与速度方向数对应成比例,表为微分的关系则有wdzvdyudx?此式称为流线微分方程设流线上位移向量又设速度向量k wj vi uV dkdz jdy idx r d?0,/或V d r dV drd?流线与速度方向相切即2.1.3流线、流管、流面与流量?流线是反映流场某瞬时流速方向的曲线。 同一时刻,由不同流体质点组成的。 ?迹线是同一质点不同时刻的轨迹线。 ?根据流线的定义,可知流线具有以下性质 (1)在定常流动中,流体质点的迹线与流线重合。 在非定常流动中,流线和迹线一般是不重合的。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 初中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号