圆锥曲线的综合问题-教案.doc

上传人:xt****7 文档编号:125726816 上传时间:2020-03-19 格式:DOC 页数:23 大小:443.04KB
返回 下载 相关 举报
圆锥曲线的综合问题-教案.doc_第1页
第1页 / 共23页
圆锥曲线的综合问题-教案.doc_第2页
第2页 / 共23页
圆锥曲线的综合问题-教案.doc_第3页
第3页 / 共23页
圆锥曲线的综合问题-教案.doc_第4页
第4页 / 共23页
圆锥曲线的综合问题-教案.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《圆锥曲线的综合问题-教案.doc》由会员分享,可在线阅读,更多相关《圆锥曲线的综合问题-教案.doc(23页珍藏版)》请在金锄头文库上搜索。

1、第三讲圆锥曲线的综合问题1直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程若0,则直线与椭圆相交;若0,则直线与椭圆相切;若0时,直线与双曲线相交;当0时,直线与双曲线相切;当b0)的右焦点为F(3,0),过点F的直线交E于A、B两点若AB的中点坐标为(1,1),则E的方程为()A.1 B.1C.1 D.1答案D解析设A(x1,y1)、B(x2,y2),所以运用点差法,所以直线AB的斜率为k,设直线方程为y(x3),联立直线与椭圆的方程得(a2b2)x26b2x9b2a40,所以x1x22;又因为a2b29,解得b29

2、,a218.2(2013江西)过点(,0)引直线l与曲线y相交于A、B两点,O为坐标原点,当AOB的面积取最大值时,直线l的斜率等于()A.BCD答案B解析SAOB|OA|OB|sinAOBsinAOB.当AOB时,SAOB面积最大此时O到AB的距离d.设AB方程为yk(x)(k0,b0),由已知,得a,c2,b2c2a21,故双曲线方程为y21.(2)设A(xA,yA),B(xB,yB),将ykx代入y21,得(13k2)x26kx90.由题意,知解得k1.所以当k1时,直线l与双曲线的左支有两个交点(3)由(2),得xAxB,所以yAyB(kxA)(kxB)k(xAxB)2,所以AB中点P

3、的坐标为.设l0的方程为yxb,将P点的坐标代入l0的方程,得b,k1,213k20,b0)到直线l:xy20的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|BF|的最小值解(1)依题意知,c0,解得c1.所以抛物线C的方程为x24y.(2)由yx2得yx,设A(x1,y1),B(x2,y2),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为yy1(xx1),即yxy1,即x1x2y2y10.同理可得切线PB的方程为x2

4、x2y2y20,又点P(x0,y0)在切线PA和PB上,所以x1x02y02y10,x2x02y02y20,所以(x1,y1),(x2,y2)为方程x0x2y02y0 的两组解,所以直线AB的方程为x0x2y2y00.(3)由抛物线定义知|AF|y11,|BF|y21,所以|AF|BF|(y11)(y21)y1y2(y1y2)1,联立方程消去x整理得y2(2y0x)yy0,y1y2x2y0,y1y2y,|AF|BF|y1y2(y1y2)1yx2y01y(y02)22y012y2y0522,当y0时,|AF|BF|取得最小值,且最小值为.题型二圆锥曲线中的定点、定值问题例2(2012福建)如图,

5、等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x22py(p0)上(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点审题破题(1)先求出B点坐标,代入抛物线方程,可得p的值;(2)假设在y轴上存在定点M,使得以线段PQ为直径的圆经过点M,转化为0,从而判断点M是否存在(1)解依题意,|OB|8,BOy30.设B(x,y),则x|OB|sin 304,y|OB|cos 3012.因为点B(4,12)在x22py上,所以(4)22p12,解得p2.故抛物线E的方程为x24y.(2)证明方法一由(1)知yx2,yx.设P(

6、x0,y0),则x00,y0x,且l的方程为yy0x0(xx0),即yx0xx.由得所以Q为.设M(0,y1),令0对满足y0x(x00)的x0,y0恒成立由于(x0,y0y1),由0,得y0y0y1y1y0,即(yy12)(1y1)y00.(*)由于(*)式对满足y0x(x00)的y0恒成立,所以解得y11.故以PQ为直径的圆恒过y轴上的定点M(0,1)方法二由(1)知yx2,yx.设P(x0,y0),则x00,y0x,且l的方程为yy0x0(xx0),即yx0xx.由得所以Q为.取x02,此时P(2,1),Q(0,1),以PQ为直径的圆为(x1)2y22,交y轴于点M1(0,1)、M2(0

7、,1);取x01,此时P,Q,以PQ为直径的圆为22,交y轴于点M3(0,1)、M4.故若满足条件的点M存在,只能是M(0,1)以下证明点M(0,1)就是所要求的点因为(x0,y01),所以2y022y022y020.故以PQ为直径的圆恒过y轴上的定点M(0,1)反思归纳定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量变式训练2已知直线l:yx,圆O:x2y25,椭圆E:1(ab0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值(1)解设椭圆的半焦距为c,圆心

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 中学学案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号