上海高中二年级数学矩阵和运算(有详细答案)精品

上传人:l**** 文档编号:125651565 上传时间:2020-03-19 格式:DOC 页数:33 大小:1.80MB
返回 下载 相关 举报
上海高中二年级数学矩阵和运算(有详细答案)精品_第1页
第1页 / 共33页
上海高中二年级数学矩阵和运算(有详细答案)精品_第2页
第2页 / 共33页
上海高中二年级数学矩阵和运算(有详细答案)精品_第3页
第3页 / 共33页
上海高中二年级数学矩阵和运算(有详细答案)精品_第4页
第4页 / 共33页
上海高中二年级数学矩阵和运算(有详细答案)精品_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《上海高中二年级数学矩阵和运算(有详细答案)精品》由会员分享,可在线阅读,更多相关《上海高中二年级数学矩阵和运算(有详细答案)精品(33页珍藏版)》请在金锄头文库上搜索。

1、 . 上海版高二上数学矩阵及其运算一初识矩阵(一)引入:引例1:已知向量,如果把的坐标排成一列,可简记为;引例2:2008年北京奥运会奖牌榜前三位成绩如下表:奖项 国家(地区)金牌银牌铜牌中国512128美国363836俄罗斯232128 我们可将上表奖牌数简记为:;引例3:将方程组中未知数的系数按原来的次序排列,可简记为;若将常数项增加进去,则可简记为:。(二)矩阵的概念1、上述形如、这样的矩形数表叫做矩阵。2、在矩阵中,水平方向排列的数组成的向量称为行向量;垂直方向排列的数组成的向量称为列向量;由个行向量与个列向量组成的矩阵称为阶矩阵,阶矩阵可记做,如矩阵为阶矩阵,可记做;矩阵为阶矩阵,可

2、记做。有时矩阵也可用、等字母表示。3、矩阵中的每一个数叫做矩阵的元素,在一个阶矩阵中的第()行第()列数可用字母表示,如矩阵第3行第2个数为。4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如为一个阶零矩阵。5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有行(列),可称此方阵为阶方阵,如矩阵、均为三阶方阵。在一个阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余元素均为零的方阵,叫做单位矩阵。如矩阵为2阶单位矩阵,矩阵为3阶单位矩阵。6、如果矩阵与矩阵的行数和列数分别相等,那么与叫做同阶矩阵;如果矩阵与矩阵是同阶矩阵,当且仅当它们对

3、应位置的元素都相等时,那么矩阵与矩阵叫做相等的矩阵,记为。7、对于方程组中未知数的系数按原来的次序排列所得的矩阵,我们叫做方程组的系数矩阵;而矩阵叫做方程组的增广矩阵。(三)、应用举例:例1、下表是我国第一位奥运会射箭比赛金牌得主张娟娟与对手韩国选手朴成贤在决赛中的各阶段成绩表: 各阶段姓名第1组第2组第3组第4组总成绩张娟娟26272928110朴成贤29262628109(1)将两人的成绩各阶段成绩用矩阵表示;(2)写出行向量、列向量,并指出其实际意义。例2、已知矩阵且,求、的值及矩阵。例3、写出下列线性方程组的增广矩阵:(1); (2)例4、已知线性方程组的增广矩阵,写出其对应的方程组:

4、(1) (2)例5、已知矩阵为单位矩阵,且,求的值。(四)、课堂练习:1、请根据游戏“剪刀、石头、布”的游戏规则,作出一个阶方阵(胜用1表示,输用 表示,相同则为0)。2、奥运会足球比赛中国队所在C组小组赛单循环比赛结果如下: 中国平新西兰11 巴西胜比利时10 中国负比利时02巴西胜新西兰50 中国负巴西03 比利时胜新西兰01(1)试用一个4阶方阵表示这4个队之间的净胜球数;(以中国、巴西、比利时、新西兰为顺序排列)(2)若胜一场可得3分,平一场得1分,负一场得0分,试写出一个4阶方阵表示各队的得分情况;(排列顺序与(1)相同)(3)若最后的名次的排定按如下规则:先看积分,同积分看净胜球,

5、试根据(1)、(2)两个矩阵确定各队名次。二、矩阵的三种基本变换(一)、复习引入:引例、根据下列增广矩阵,写出其对应的线性方程组,并分析这些增广矩阵所对应线性方程组解的关系,从中你能得到哪些启发?(1) (2) (3)(4) (5) (6)(二)、矩阵的三种基本变换新课讲解:通过上面练习,我们可以发现以下三个有关线性方程组的增广矩阵的基本变换:(1)互换矩阵的两行;(2)把某一行同乘(除)以一个非零的数;(3)某一行乘以一个数加到另一行。 显然,通过以上三个基本变换,可将线性方程组的系数矩阵变成单位矩阵,这时增广矩阵的最后一个列向量给出了方程组的解。(三)、应用举例:例1、已知每公斤五角硬币价

6、值132元,每公斤一元硬币价值165元,现有总重量为两公斤的硬币,总数共计462个,问其中一元与五角的硬币分别有多少个?(来自网上“新鸡兔同笼问题”)例2、用矩阵变换的方法解三元一次方程组的解。例3、运用矩阵变换方法解方程组:(、为常数)说明:(1)符合情况)时,方程组有唯一解,此时两个线性方程所表示的直线相交; (2)符合情况)时,两个线性方程所表示的直线平行,此时方程组无解; (3)符合情况)时,两个线性方程所表示的直线重合,此时方程组有无穷多解。(四)、课堂练习:用矩阵变换方法解下列问题:(1)若方程组的解与相等,求的值。(2)有黑白两种小球各若干个,且同色小球质量均相等,在如下图所示的

7、两次称量的天平恰好平衡,如果每只砝码质量均为克,每只黑球和白球的质量各是多少克?第一次称量第二次称量(3)解方程组:三、矩阵运算 (对从实际问题中抽象出来的矩阵,我们经常将几个矩阵联系起来,讨论它们是否相等,它们在什么条件下可以进行何种运算,这些运算具有什么性质等问题,这是下面所要讨论的主要内容.) 1相等 定义 如果两个矩阵,满足: (1) 行、列数相同,即 ; (2) 对应元素相等,即aij = bij (= 1, 2, , m;j = 1, 2, , n ),则称矩阵A与矩阵B相等,记作 A = B (由矩阵相等定义可知,用等式表示两个mn矩阵相等,等价于元素之间的mn个等式.)例如,矩

8、阵A =, B = 那么A = B,当且仅当a11 = 3,a12 = 0,a13 = -5,a21 = -2,a22 = 1,a23 = 4 而C = 因为B, C这两个矩阵的列数不同,所以无论矩阵C中的元素c11, c12, c21, c22取什么数都不会与矩阵B相等.2加法定义2.3 设,是两个mn矩阵,则称矩阵C = 为A与B的和,记作C = A + B = (由定义2.3可知,只有行数、列数分别相同的两个矩阵,才能作加法运算.) 同样,我们可以定义矩阵的减法:D = A - B = A + (-B ) =称D为A与B的差.例1 设矩阵A =, B =,求A + B,A - B. 例2

9、、矩阵,若,求的值。 矩阵加法满足的运算规则是什么? 设A, B, C, O都是mn矩阵,不难验证矩阵的加法满足以下运算规则 1. 加法交换律: A + B = B + A; 2. 加法结合律: (A + B ) + C = A + (B + C ) ; 3. 零矩阵满足: A + O = A; 4. 存在矩阵-A,满足:A -A = A + (-A ) = O . 3数乘 定义2.4 设矩阵,为任意实数,则称矩阵为数与矩阵A的数乘,其中,记为C =A (由定义2.4可知,数乘一个矩阵A,需要用数去乘矩阵A的每一个元素.特别地,当 = -1时,A = -A,得到A的负矩阵.) 例3 设矩阵A

10、=,用2去乘矩阵A,求2A. 数乘矩阵满足的运算规则是什么? 对数k , l和矩阵A = ,B =满足以下运算规则: 1. 数对矩阵的分配律:k (A + B ) = kA + kB; 2. 矩阵对数的分配律:( k + l ) A = kA + lA; 3. 数与矩阵的结合律:( k l ) A = k (lA ) = l (kA ) ; 4. 数1与矩阵满足: 1A = A. 例4 设矩阵 A =,B =,求3A - 2B.例5给出二元一次方程组存在唯一解的条件。 4乘法 某地区甲、乙、丙三家商场同时销售两种品牌的家用电器,如果用矩阵A表示各商场销售这两种家用电器的日平均销售量(单位:台)

11、,用B表示两种家用电器的单位售价(单位:千元)和单位利润(单位:千元): I II 单价 利润III甲乙丙 A = B = 用矩阵C = 表示这三家商场销售两种家用电器的每日总收入和总利润,那么C中的元素分别为总利润总收 入 , 即C = =其中,矩阵C中的第行第j列的元素是矩阵A 第行元素与矩阵B 第j列对应元素的乘积之和. 矩阵乘积的定义 设A=是一个ms矩阵,B=是一个sn矩阵,则称mn矩阵C =为矩阵A与B的乘积,记作 C = AB.其中cij = ai1b1 j + ai2b2 j + + ai s bs j = (= 1, 2, , m;j = 1, 2, , n ). (由矩阵乘

12、积的定义可知:) (1) 只有当左矩阵A的列数等于右矩阵B的行数时,A, B才能作乘法运算AB; (2) 两个矩阵的乘积AB亦是矩阵,它的行数等于左矩阵A的行数,它的列数等于右矩阵B的列数; (3) 乘积矩阵AB中的第行第j列的元素等于A的第行元素与B的第j列对应元素的乘积之和,故简称行乘列的法则. 例6 设矩阵 A = , B = ,计算AB. 例7 设矩阵 A = ,B =, 求AB和BA. 由例6、例7可知,当乘积矩阵AB有意义时,BA不一定有意义;即使乘积矩阵AB和BA有意义时,AB和BA也不一定相等.因此,矩阵乘法不满足交换律,在以后进行矩阵乘法时,一定要注意乘法的次序,不能随意改变. 在例6中矩阵A和B都是非零矩阵(AO, B O ),但是矩阵A和B的乘积矩阵AB是一个零矩阵(AB = O),即两个非零矩阵的乘积可能是零矩阵.因此,当AB = O,不能得出A和B中至少有一个是零矩阵的结论. 一般地,当乘积矩阵AB = AC,且AO时,不能消去矩阵A,而得到B = C.这说明矩阵乘法也不满足消去律. 那么矩阵乘法满足哪些运算规则呢? 矩阵乘法满足下列运算规则:

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作范文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号