文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究

上传人:灯火****19 文档编号:122804545 上传时间:2020-03-07 格式:DOC 页数:10 大小:314.35KB
返回 下载 相关 举报
文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究_第1页
第1页 / 共10页
文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究_第2页
第2页 / 共10页
文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究_第3页
第3页 / 共10页
文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究_第4页
第4页 / 共10页
文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究》由会员分享,可在线阅读,更多相关《文献翻译——超级电容器用氮掺杂多孔碳材料的制备及性能研究(10页珍藏版)》请在金锄头文库上搜索。

1、基于溶胶-凝胶过程和KOH活化方法的超级电容器用 富氮掺杂多孔碳摘 要: 一种具有高比表面积和优良电容性能的超级电容器电极用富氮掺杂多孔碳材料(Nitrogen-doped porous carbon ,NPC)是聚丙烯酸和甲醚化三聚氰胺甲醛树脂通过溶胶-凝胶过程,在常温下静置24小时,接着在N2氛围下,于350煅烧、500碳化各一小时,用不同比例的KOH在700活化两小时而制备的。NPC的孔容和表面化学组成可由KOH活化步骤控制,随着活化比例的 增大,NPC的比表面积发生了显著的变化,由14.2 m2g-1增加到最高2674 m2g-1,氮元素的含量则从20.3%减少到8.8%。实验表明,活

2、化比例为1:1.5时,达到最理想效果。氮元素的存在使得多孔结构的NPC在1M硫酸溶液中具有很好的电化学性能:电流密度为0.2 Ag-1时表现出高达280 Fg-1的比容量、优良的倍率特性(电流密度15Ag-1时仍有154Fg-1),以及良好的循环稳定性(9000次循环后没有电容量损失)。这些特性使得这种NPC很有希望成为超级电容器的电极材料。关键词: 氮掺杂;多孔碳;溶胶-凝胶过程;活化;超级电容器1 介绍基于双电层电容器中的电化学电荷调节(充放电机制)和法拉第过程(赝电容效应)的电化学电容器,是大电流充放电用电设备和混合动力汽车的重要组成部分1-6。为了改善电化学电容器的比容量性能,通过加入

3、大量的表面电活性物质来引入赝电容并且同时增加双电层电容的容量,这一方法是极为有效和有意义的 2-12 。R.Kotz3, A.Burke4,F.X.Wang6,T.X.Ma8和E.Frackowiak12等人在它的工作原理、现今应用和将来发展趋势及前景方面提供了更多细节信息。多孔碳材料作为电化学电容器电极材料的重要可选材料之一,因其多孔的结构、稳定的物理化学性质、优良的电导率、低廉的成本以及易于制备的特点,因而可能是增加超级电容器比容量的最理想材料3-6,8,12-16。经过研究发现,多孔的结构能使介孔和微孔协同作用,介孔提供了电子和离子进出的有效通道,而微孔既提供了小空穴使离子能够快速传输同

4、时也是较高吸附表面积的一个重要原因2-6,8,12,17,18。在碳材料中进行氮掺杂,因含氮官能团能引入法拉第反应并提高碳材料在电解液中的浸润性,是提高比容量非常理想的方法19-21。三聚氰胺树脂作为一种多用途的化合物,富含氮元素,引起了科学家和研究人员的广泛关注,欲利用它在超级电容器电极材料制备中作为氮源 22-31。过去四年中,研究人员在改善超级电容器容量方面已展开了广泛的研究,采用氮表面官能团掺杂的碳材料如氮掺杂的有序介孔酚醛树脂31、氮掺杂碳包覆的石墨烯32、石墨烯/氮掺杂纳米碳化合物33、硝酸改性的高度有序介孔酚醛树脂基碳材料34和单分散的氮掺杂纳米球35。然而,这些材料制备方法(比

5、如模板法合成和碳包覆的氧化石墨烯)通常很繁琐,操作复杂,成本高或者较为耗时,因此找到一种可以简便地制备出具有优异电化学性能的、氮掺杂多孔碳材料的方法是非常受期待的10,36。我们在聚丙烯酸水溶液中引入甲醚化的三聚氰胺-甲醛树脂水溶液,在室温下通过溶胶-凝胶作用制得了实验所需碳化前驱体,之后通在N2氛围中过热分解、碳化并KOH活化后,制备了一种氮含量丰富,具有高比表面积,高比容量的氮掺杂多孔碳材料。电化学性能测试显示,这种氮掺杂多孔碳材料作为水性超级电容器活性电极材料有着优异的电容特性。2 实验部分2.1 实验原料与试剂丙烯酸水溶液(Mn=1800,PDI=1.1,含固量52%)、甲醚化的三聚氰

6、胺-甲醛树脂水溶液(Unibo HT580,含固量50%)购自上海Yiqian有限公司。乙醇(AR,99.7%)、KOH溶液(AR,85%)和HCl(AR, 36.038.0%)购自国药集团化学试剂有限公司。所有试剂除非另有申明收到后均在短期内使用以保证其品质。2.2 氮掺杂多孔碳的合成简单的制备过程描述如下:将4.0g的丙烯酸水溶液(羧基0.029mol)和15.7g的甲醚化的三聚氰胺-甲醛树脂水溶液混合,室温下静置24小时,澄清溶液渐变为浑浊,得到碳化前驱体。接着将碳化前驱体置于管式炉里在氮气氛围下碳化,条件为:350C和500C各1小时,升温速率5C min-1。接着在气氛围下用KOH活

7、化,条件为700C 2小时。500C碳化得到的碳标记为C-500。KOH活化过程根据文献中的方法略作改动37。以KOH/ C-500活化比为1:1.5为例,将0.6g C-500混入KOH溶液(1.06gKOH超声分散于15ml乙醇),接着氮气保护下升温至70C使乙醇于挥发。KOH活化过程在管式炉中完成(氮气氛围下升温速率5C min-1,至700C保温2小时)。冷却至室温后,用HCl 和大量去离子水反复清洗直至滤液呈中性。最后将产物置于90C真空烘箱中干燥24小时。最终制备了活化的氮掺杂多孔碳。所有经KOH活化后的碳都是标记为C-700-X,其中700代表700C活化,X代表KOH/ C-5

8、00质量比。C-700-0.75, C-700-1.0和C-700-1.5产率分别为46%, 36% 和 21%。2.3 样品表征样品重量随温度的变化(TGA)在美国Perkin Elmer公司的TGA 7型热重分析仪上完成(氮气氛围,升温速率:10C min-1)。傅里叶红外(FT-IR)光谱测试是在美国Thermo Electron公司的Nicolet 5700型光谱仪上完成的,用来表征碳化过程中前驱体官能团的改变。场发射扫描电子显微(FE-SEM) 测试在日本Hitachi公司的S-4800型仪器上完成。透射电子显微(TEM)测试在日本JEOL公司的JEM-2100型上完成,以观察碳的形

9、态。氮气吸/脱附等温线测试在美国Micromeritics公司的ASAP 2010型仪器上完成(77K),以确定碳材料上孔的大小,孔尺寸分布和比表面积分别由BJH和BET方法计算确定。X射线光电子能谱分析(XPS)在美国Thermo Fisher公司的ESCALAB250Xi型仪器上完成(Al Ka radiation, hv=2486.6eV),用以表征碳表面的含氮官能团。元素分析(EL)是在德国Elementar Analysensysteme GmbH公司的CHNS Vario EL型仪器上完成。2.4 电化学测试电化学测试采用三电极体系,在上海辰华仪器公司的CHI 660D型仪器上室温

10、下完成。测试使用1M H2SO4水溶液做电解液,Ag/AgCl电极用作参比电极(溶剂为3M KCl),铂片用作对电极。将乙炔黑、聚四氟乙烯、活性材料按照质量比1:1:8混合后,以10Mpa的压力压在钛网上得到工作电极。每个工作电极含有约4mg的活性材料,表面积约为1cm2。循环伏安和恒电流充放电测试的电势窗口为-0.1V0.7V。电化学阻抗测试的频率范围是100kHz0.01Hz,交流电压是10Mv。3 结果与讨论3.1 形貌与结构图1显示的是丙烯酸/甲醚化三聚氰胺-甲醛树脂在生温的过程中热分解是样品质量的变化 。可以看出,热分解过程分为三步。三个主要分解步骤分别在60200C(Tmax=10

11、0C,5.5%质量损失),200350C(Tmax=250C,30%质量损失),350500C(Tmax=400C,27.2%质量损失)。在500C高温下,丙烯酸/甲醚化三聚氰胺-甲醛树脂质量剩余37.3%。我们根据热分解曲线所提供的信息,将前驱体分别在350C和500C分解和碳化。为研究材料的结构和官能团,对C-500进一步进行了FT-IR测试。如图2,3430cm-1处的特征峰对应着N-H的伸缩振动,2000 cm-1处的较弱宽峰与类似CN的含氮官能团有关38。1510 cm-1处的特征峰我们认为对应C=C伸缩振动38,39。935-1400 cm-1的宽峰是由体系中C-N,C=N的伸缩和

12、转动引起的38,40,532-900 cm-1处的峰是环的呼吸或弯曲振动和C-NH2官能团的弯曲振动38,41-43。因此,根据上述分析,我们可以得出以下结论:C-500包含许多含氮官能团。图3和图4分别是C-500和C-700-1.5的FE-SEM和TEM图像,可以很明显的发现,C-500经过KOH活化后产生了多孔结构。C-500表面光滑、孔较少,而C-700-1.5的表面形貌与之差异很大,它表面相当粗糙,并且有大量直径小于几百纳米的凹穴,它们的形成得益于700C高温时残余气体排出和KOH活化这两者的共同作用。C-700-1.5中重要的多孔结构可能起到离子缓冲和减小扩散阻力的作用。TEM图像

13、(图4b和4c)更明显显示出C-700-1.5有部分整齐的石墨层和大量的微孔,同样这与C-500(图4a)的形貌差异很大。 为进一步研究KOH活化中孔的结构,经测试分别得到了C-500、C-700-0.75、C-700-1.0和C-700-1.5的氮气吸/脱附等温线,如图5所示。C-500呈现出型等温线的形状,表明它不存在孔结构,这一点也在5b中得到了证实。随着KOH/C-500质量比的增加,C-700-0.75、C-700-1.0、C-700-1.5的吸附体积显著增加,表明形成了更多的多孔。C-700-0.75和C-700-1.0呈现出型等温线形状,这表明其含有微孔和少量介孔,C-700-1

14、.5呈现出型等温线形状,并且在相对压力p/po为0.4-1.0时有滞后回线,表明有更多介孔的存在。除此之外,在相对压力p/po0.9时不显著的尖峰表明大孔仍然存在,但并不明显。这些信息都与FE-SEM(图3)和TEM(图4)中形貌结果一致。通过BJH计算得到更多关于介孔大小和孔尺寸分布的信息。所有碳的孔径分布由吸附等温线得出,记录在图6中。孔尺寸分布曲线证实了所有的活性碳介孔孔径分布较窄,从2.0到6.0nm不等,而随着KOH/C-500质量比从0.75增到1.5,微孔的孔容也因KOH的活化作用而逐渐变大。C-500、C-700-0.75、C-700-1.0、C-700-1.5的结构特性列在表

15、1中。C-500的BET比表面积仅为14.2m2g-1、无孔容,说明孔极少可忽略不计,而C-700-0.75,C-700-1.0,C-700-1.5这些经过活化的碳材料表现出很好的多孔性。随着KOH/C-500质量比从0.75增到1.5,材料BET比表面积和孔容都因活化程度的增大而剧增,C-700-0.75的比表面积为471m2g-1,孔容为0.18cm3g-1,C-700-1.5的比表面积为2674m2g-1,孔容为0.15cm3g-1。表1 材料孔特性、氮含量及氮元素归属汇总表Tab 1. Porous property identified from BET, nitrogen content evaluated from elemental analysis and relative contents of functional groups in N 1s peaks from XPS spectra of carbons样品BET表面积 m2g-1孔容量cm3 g-1氮元素wt.%N1s%N6N5NQNXC-50014.2020.3452.6635.709.670.00C-700-0.754710.1814.3546.5641.5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 管理论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号