南京理工RFID复习

上传人:mg****2 文档编号:122127874 上传时间:2020-03-01 格式:DOCX 页数:17 大小:244.61KB
返回 下载 相关 举报
南京理工RFID复习_第1页
第1页 / 共17页
南京理工RFID复习_第2页
第2页 / 共17页
南京理工RFID复习_第3页
第3页 / 共17页
南京理工RFID复习_第4页
第4页 / 共17页
南京理工RFID复习_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《南京理工RFID复习》由会员分享,可在线阅读,更多相关《南京理工RFID复习(17页珍藏版)》请在金锄头文库上搜索。

1、RFID复习第一章物联网概论一、 物联网Internet of things分为标识、感知、处理和信息传送四个环节,对应的关键技术为RFID、传感器、智能芯片和无线传输网络。中国感知中国美国“智能电网”和“智慧地球”欧洲“物联网行动计划”日韩“U-Japan”和“U-Korea”战略新加坡“智慧国2015”发展蓝图第二章RFID系统概论一、RFIDRadio Frequency IdentificationRFID利用射频信号通过空间耦合实现无接触信息传递达到识别目标的技术。系统通常读写器、电子标签及应用软件组成。可用于物流,电子票证,动物或资产追踪管理,供应冷链,高速公路智能收费等领域。二、

2、工作原理:读写器控制射频模块发出射频信号,电子标签主动发送(有源标签)或者凭借感应电流所获得的能量(无源标签)发送出芯片中的存储信息,接收标签的应答,读写器对标签的传递过来的信息进行解码,并传输到主机进行数据处理。1)在低频段(100MHz以下)基于电感耦合(近距)2)在高频段(400MHz以上)基于电磁反向散射耦合(雷达,远距)三、按工作频段分类:工作频段通信标准协议优点缺点低频(LF)125KHzISO18000-2ISO11785标准CMOS工艺技术简单可靠成熟无频率限制通信速度低识别距离短(10cm)天线尺寸大高频(HF)13.56MHzISO18000-3ISO14443ISO156

3、93与标准CMOS工艺兼容技术可靠成熟在交通智能卡等领域应用广泛距离不够远(75cm)天线尺寸大,受金属材料等影响大超高频(UHF)840-845MHz和920-925 MHzISO18000-6ISO18000-7长距离定向识别天线尺寸小,可绕射,无需可视距离,发展潜力巨大各国有不同的频段管制,受金属和液体等材料影响较大对人体有伤害,限制发射功率微波2.455.8GHz ISO18000-4DSRC除了UHF特性外更高的带宽和通信速率更长识别距离,更小的天线尺寸ISM频段共享产品多易受干扰,技术相对复杂对人体有伤害,限制发射功率第三章RFID的工作原理 一、RFID工作原理 阅读器通过天线向

4、周围空间发送一定频率的射频信号; 标签一旦进入阅读器天线的作用区域将产生感应电流,获得能量被激活;激活标签将自身信息编码后经天线发送出去; 阅读器接收该信息,经过解码后必要时送至后台网络; 后台网络中主机鉴定标签身份的合法性,只对合法标签进行相关处理,通过向前端发送指令信号控制阅读器对标签的读写操作;二、RFID的三种工作模型1)以能量供给为基础的工作模型无源电子标签:当标签进入阅读器的工作范围内以后,标签收到阅读器发送的信号,产生感应电流从而激活内部的电路,内部整流电路将射频能量转化为电能,将该能量存储在标签内部的大电容里,进而为其正常工作提供了所需的能量。半有源电子标签:阅读器发送的射频信

5、号只用来激活标签。有源电子标签:只要标签处于阅读器的工作范围以内,就可以主动向阅读器发送信号。2)以时序方式完成数据传输的工作模型阅读器先发言模式(RTF, Reader Talk First)如果阅读器不主动激活电子标签的话,电子标签不会向阅读器发送信号,通常用于无源标签。电子标签先发言模式(TTF, Tag Talk First)就算阅读器不激活标签,标签也会主动向阅读器发送信号3)以数据传输为目的的工作模型上行链路传输电子标签向阅读器的数据传输。下行链路传输阅读器向电子标签的数据传输。离线写入:无论是哪一类电子标签都有离线写入这种情况。所有电子标签在出厂之前都要由生产厂家将标签的ID号(

6、EPC)固化写入,该ID号是标签的身份标识,是唯一的,一旦写入以后将永远不能修改。在线写入:拓展高级功能,可写标签,结构复杂,成本高。三、 RFID防碰撞理论1)碰撞的种类阅读器碰撞:多个阅读器同时与一个标签通信,致使标签无法区分阅读器的信号。电子标签碰撞:多个标签同时响应阅读器的命令而发送信息,使阅读器无法识别标签。2)传统解决方案1)空分多址(SDMA)2)频分多址(FDMA)3)码分多址(CDMA)4)时分多址(TDMA)应用最广泛,又可以分为基于概率的ALOHA算法(饿死)和确定的二进制算法两种。3)ALOHA反碰撞算法1、纯ALOHA算法 主要采用标签先发言(Tag-Talk-Fir

7、st)的方式,即电子标签一旦进入阅读器的工作范围获得能量后,便向阅读器主动发送自身的序列号。 在某个电子标签向阅读器发送数据的过程中,如果有其它电子标签也同时向该阅读器发送数据,此时阅读器接收到的信号就会产生重叠,导致阅读器无法正确识别和读取数据。 阅读器通过检测并判断接收到的信号是否发生碰撞,一旦发生碰撞,阅读器则向标签发送指令使电子标签停止数据的传送,电子标签接到阅读器的指令后,便随机的延迟一段时间再重新发送数据。在纯ALOHA算法中,假设电子标签在t时刻向阅读器发送数据,与阅读器的通信时间为To,则碰撞时间为2T0。G为数据包交换量,S为吞吐率。2、Slotted ALOHA算法: 为提

8、高RFID系统的吞吐率,可以把时间划分为多段等长的时隙,时隙的长度由系统时钟确定,并且规定电子标签只能在每个时隙的开始时才能向阅读器发送数据帧,这就是Slotted ALOHA算法; 根据上述规定可得,数据帧要么成功发送,要么完全碰撞,避免了纯ALOHA算法中部分碰撞的发生,使碰撞周期变为To; 它是纯ALOHA算法的简单改进,也属于时分多址法,它的缺点是需要同步时钟的控制;3、Frame Slotted ALOHA算法(FSA): ALOHA 的另一种改进算法是帧时隙 ALOHA 算法(FSA)。 它是在Slotted ALOHA 算法的基础上把 N 个相同的时隙组成一帧,且在整个电子标签识

9、别过程中,帧的大小是固定的,帧中的每个时隙足够一个电子标签与阅读器进行完通信,该算法也称为固定帧时隙 ALOHA 算法。 该算法比较适用于传输信息量较大的场合,和Slotted ALOHA 算法一样,帧时隙 ALOHA 算法同样需要一个同步开销。步骤 首先由阅读器把帧长度 N 发送给电子标签,电子标签则产生1,N之间的随机数,接下来各电子标签选择相应的时隙,与阅读器进行通信; 如果当前时隙与电子标签随机产生的数相同,电子标签则响应阅读器的命令,若不同,标签则继续等待。 假如当前时隙内仅有一个电子标签响应,阅读器就读取该标签发送的数据,读取完了以后就使该标签处于“无声”状态。 如果当前时隙内有多

10、个标签响应,则该时隙内的数据就出现了碰撞,此时阅读器会通知该时隙内的标签,让它们在下一轮帧循环中重新产生随机数参与通信。 逐帧循环,直到识别出所有电子标签为止。4、Dynamic FSA 算法: 该算法根据上一读写周期中统计的成功识别的时隙数、发生碰撞的时隙数、空闲时隙数信息来调整下一读写周期的帧长度。具体调整方法有两种。 第一种:根据统计信息,当碰撞时隙数达到规定的上限时,读写器增大下一帧的长度;当碰撞时隙数少于规定的下限时,读写器减少下一帧时隙数。使用该方法当标签规模不大时,读写器使用较短的帧长度就能快速识别标签,而当标签数量很多时,读写器不得不增加帧长度以减少碰撞次数。 第二种:读写器以

11、 2 或 4 个时隙数为一帧开始,如果没有一个标签能够成功识别,读写器增加帧长度开始下一轮读写周期。重复上述过程直到至少有一个标签被成功识别。当有一个标签成功识别后,读写器立刻停止当前的读写周期,然后读写器再以开始时最小的帧长度开始下一轮读写识别。 该算法通过动态调整帧长度,相比帧时隙算法在标签规模不大时能够取得较理想的吞吐率。可是一旦标签个数很大时,增大帧长度就不是很好的解决方法,因为帧长度不能无限制的增大。 采用ALOHA系列算法,假设阅读器射频工作范围内存在 n 个标签,理论上阅读器至少需要 n 个时隙的时间才能成功识别完,最坏的情况下,阅读器经过多次搜索也未能识别出某个标签,导致出现“

12、饿死现象”。 而Binary-Tree系列算法并不会采取退避原则,而是直接进行解决。当多标签同时发送信息而碰撞时,读写器利用碰撞位将碰撞的标签分为两个或更多子集,对每个子集分别识别。如果存在碰撞则继续再划分,直到标签被完全识别为止。这样则有效地避免了标签的“饿死现象”。四、RFID相关电磁场理论读写器和电子标签通过各自的天线构建了二者之间的非接触信息传输通道。根据观测点与天线之间的距离由近及远可以将天线周围的场划分为三个区域:非辐射场区:场强与距离天线的远近有关,电磁能量只在场源附近来回流动,随着与天线的距离不断增大,场强不断减小。 分界:R=/2辐射近场区:菲涅尔区,电磁能量会脱离天线的束缚

13、进入到外空间。该区域里辐射场的角度分布与距天线口径的距离远近有关。分界:R=2D2/(已知天线直径为D,天线波长为)辐射远场区:夫郎荷费区,该区域里辐射场的角度分布与距天线口径的距离远近是不相关的。五、RFID的能量传递读写器到电子标签的能量传递 距离读写器R处的电子标签的功率密度S为:电子标签所能接收到的最大功率Ptag:PTx读写器的发射功率,GTx读写器发射天线的增益,Gtag电子标签接收天线的增益,R电子标签与读写器间距电子标签到读写器的能量传递Pback电子标签反射出去的功率,雷达散射截面,Sback功率密度,PRx读写器接收到的功率第四章RFID读写器一、读写器的功能实现与电子标签

14、的通讯:最常见的就是对标签进行读数,这项功能需要有一个可靠的软件算法确保安全性、可靠性等。除了进行读数以外,有时还需要对标签进行写入,这样就可以对标签批量生产,由用户按照自己需要对标签进行写入;给标签供能:在标签是被动式或者半被动式的情况下,需要读写器提供能量来激活射频场周围的电子标签;阅读器射频场所能达到的范围主要由天线的大小以及阅读器的输出功率决定的。天线的大小主要是根据应用要求来考虑的,而输出功率在不同国家和地区,都有不同的规定。实现与计算机网络的通讯实现多标签识别实现移动目标识别实现错误信息提示有源标签的电池信息二、读写器的组成天线: 发射和接收射频载波信号 将读写器中的电流信号转换成射频载波信号并发送给电子标签,或者接收标签发送过来的射频载波信号并将其转化为电流信号; 无源标签能量供给射频接口模块 包括发射器、射频接收器、时钟发生器和电压调节器等。该模块是读写器的射频前端,负责射频信号的发射及接收。 调制电路负责将需要发送给电子标签的信号加以调制,然后再发送; 解调电路负责将解调标签送过来的信号并进行放大; 时钟发生器负责产生系统的正常工作时钟。逻辑控制模块 读写器的逻辑控制模块是整个读写器工作的控制中心、智能单元,是读写器的“大脑”, 读写器在工作时由逻辑控制模块发出指令,射频接口模块按照不同的指令做出不同的操作。 包括微控

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号