人眼视觉特性(HVS)

上传人:ali****an 文档编号:121673686 上传时间:2020-02-24 格式:DOC 页数:15 大小:1.20MB
返回 下载 相关 举报
人眼视觉特性(HVS)_第1页
第1页 / 共15页
人眼视觉特性(HVS)_第2页
第2页 / 共15页
人眼视觉特性(HVS)_第3页
第3页 / 共15页
人眼视觉特性(HVS)_第4页
第4页 / 共15页
人眼视觉特性(HVS)_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《人眼视觉特性(HVS)》由会员分享,可在线阅读,更多相关《人眼视觉特性(HVS)(15页珍藏版)》请在金锄头文库上搜索。

1、人眼视觉特性人眼视觉特性(一) 人眼类似于一个光学系统,但它不是普通意义上的光学系统,还受到神经系统的调节。人眼观察图像时可以用以下几个方面的反应及特性:(1)从空间频率域来看,人眼是一个低通型线性系统,分辨景物的能力是有限的。由于瞳孔有一定的几何尺寸和一定的光学像差,视觉细胞有一定的大小,所以人眼的分辨率不可能是无穷的,HVS对太高的频率不敏感。(2)人眼对亮度的响应具有对数非线性性质,以达到其亮度的动态范围。由于人眼对亮度响应的这种非线性,在平均亮度大的区域,人眼对灰度误差不敏感。(3)人眼对亮度信号的空间分辨率大于对色度信号的空间分辨率。(4)由于人眼受神经系统的调节,从空间频率的角度来

2、说,人眼又具有带通性线性系统的特性。由信号分析的理论可知,人眼视觉系统对信号进行加权求和运算,相当于使信号通过一个带通滤波器,结果会使人眼产生一种边缘增强感觉一一侧抑制效应。(5)图像的边缘信息对视觉很重要,特别是边缘的位置信息。人眼容易感觉到边缘的位置变化,而对于边缘的灰度误差,人眼并不敏感。(6)人眼的视觉掩盖效应是一种局部效应,受背景照度、纹理复杂性和信号频率的影响。具有不同局部特性的区域,在保证不被人眼察觉的前提下,允许改变的信号强度不同。人眼的视觉特性是一个多信道(Multichannel)模型。或者说,它具有多频信道分解特性(Mutifrequency channel decomp

3、ositon )。例如,对人眼给定一个较长时间的光刺激后,其刺激灵敏度对同样的刺激就降低,但对其它不同频率段的刺激灵敏变却不受影响(此实验可以让人眼去观察不同空间频率的正弦光栅来证实)。视觉模型有多种,例如神经元模型,黑白模型以及彩色视觉模型等等,分别反应了人眼视觉的不同特性。Campbell和Robosn由此假设人眼的视网膜上存在许多独立的线性带通滤波器,使图像分解成不同频率段,而且不同频率段的带宽很窄。视觉生理学的进一步研究还发现,这些滤波器的频带宽度是倍频递增的,换句话说,视网膜中的图像分解成某些频率段,它们在对数尺度上是等宽度的。视觉生理学的这些特征,也被我们对事物的观察所证实。一幅分

4、辨率低的风景照,我们可能只能分辨出它的大体轮廓;提高分辨率的结果,使我们有可能分辨出它所包含的房屋、树木、湖泊等内容;进一步提高分辨率,使我们能分辨出树叶的形状。不同分辨率能够刻画出图像细节的不同结构。人眼在可见光谱范围内的视觉灵敏度是不均匀的,它随波长的变化而变化。1.1色觉向度光波具有三种可以量化的物理学向度,那就是波长 波幅和纯度。所谓纯度是指同一束光所含光波的种类数。如果该束光只含有一种光波,即为同质光。若含两种以上的光波,就称为异质光或多彩光。当人眼睛的视网膜受到光的刺激时,所引起的色觉经验具有三种心理性向度,即色彩亮度和饱和度。 色彩之不同,取决于光的波长,而亮度的高低则与光的波幅

5、成正比,但也与光的波长有关。在白天,波长550nm左右的光最亮,而在夜晚,波长510nm左右的光最亮饱和度是指颜色的纯度。其饱和度越大,其色彩越鲜艳,反之,越灰暗。1.2人眼对光谱的灵敏度在人眼的视网膜上有两种视觉细胞,即锥状细胞和杆状细胞。锥状细胞不但可以接受色彩的刺激,还可以感受亮度的刺激。所以,在白天书画光下,人眼可以同时识别彩色与非彩色的物体,但到了夜间或暗处,锥状细胞即失去感光作用,视觉功能由杆状细胞取代.此时,人眼便无法感觉彩色,仅能辨别白色和灰色。1.3明视觉 暗视觉与中介视觉明视觉在环境亮度大于10cd.m时,视觉完全由锥状细胞起作用,最的的视觉响应在光谱蓝绿区间的555nm处

6、,在这样亮度的环境中的视觉特性称为明视觉。暗视觉在环境亮度低于10-cd.m-时,锥状细胞失去感光作用,视觉功能由杆状细胞取代,人眼失去感觉彩色的能力,仅能辨别白色和灰色.在这样亮度的环境中的视觉特性称为暗视觉.中介视觉当景物的亮度增加到10-cd.m-以上时,除明亮度增加外,还可以发现三个效应。首先,中心凹的察觉开始变得和边缘部分的察觉一样容易。其次,可以感觉到颜色,开始时弱,其后增强。第三,随着亮度的变化,锥状细胞和杆状细胞对视觉的作用也随之发生变化。1.4明适应 暗适应和比视感度明适应人由暗处走到亮处时的视觉适应过程,称为明适应。当人由暗处走到亮处时,人眼一时无法辨认清物体,需要大约一分

7、钟的调整适应时间,其调整过程分为三个阶段:(1)瞳孔缩小,减少光线的进入。(2)锥状细胞敏感度逐渐增加。(3)杆状细胞敏感度迅速降低。暗适应人由亮处走到暗处时的视觉适应过程,称为暗适应。当人由亮处走到暗处时,人眼一时无法辨认物体,需要大约三十分钟的调整适应时间,其调整过程也分为三个阶段:(1)瞳孔放大,增加光线的进入。(2)锥状细胞敏感度减弱,感光度逐渐增加。(3)杆状细胞敏感度迅速增加,以取代锥状细胞,担负视觉功能。比视感度可见光的波长约在380 至780 nm之间,其中黄绿色对人眼的视觉感度最高,设定为100%,则波长为480nm的蓝色光和波长为650nm的红色光的比视感度就只有0.1左右

8、了,所以这两种光的视觉感度较差。所以,在汽车防雾灯和道路照明中采用能发出黄绿光的光源,为的就是增加人眼的视觉感度来提高照明亮度,从而保证安全行车。视敏函数曲线相对视敏度人眼视觉特性(二) 作者:lymex转自:牧夫天文论坛一、导言人眼是人身体中最重要的感觉器官,非常完善、精巧和不可思议,是生命长期进化到高级形式的必然产物。在人感觉的外界信息中,有90%以上是通过眼睛获得的。我们天天在用自己的眼睛,很多与视觉有关的事情习以为常,往往对其特性反而不了解,或者自认为很简单的知识或问题,但实际上存在误解。在天文观测中,了解自己的眼睛,尤其是了解人眼的暗光特性,会更好的进行观测。人眼的特性主要取决于人眼

9、的构造,包括光线如何会聚、如何检测和视觉信号如何传导。另外,神经系统的特性尤其是人脑对视觉信息的处理过程也起着一定的作用。本文多次用到亮度的概念,这在上一期夜空亮度一文中有详细的定义和描述,这里再简单介绍一下。亮度是光度学概念,是描述物体表面明暗程度的。亮度概念与照度、发光强度、光通亮是分别不同的光度学概念,单位也不同。亮度的单位是尼特。这个概念就像能量、功率和重力都是不同的概念一样。一个40W的日光灯,照射在距离其下面2米远的白纸上,白纸的亮度大约为25尼特。猎户座大星云M42的中心部分,大约是0.02尼特。满月表面是3000尼特,木星表面是800尼特。满月照射下的白纸为0.05尼特。二、人

10、眼的构造人眼的构造相当于一架摄像机或照相机。前面,是由角膜、晶状体、前房后房、玻璃体所共同组成的具备镜头功能的组合,把物体发出的光线聚焦到后面的相当与胶卷的用于检测光线的视网膜上。角膜,为一直径11mm的透明膜,镶嵌于巩膜前面圆孔内,其中央部的曲率半径为8mm,周边部比较平坦。角膜的屈光指数为1.376,为眼球的主要曲光媒质。晶状体,为一形似双凸透镜的透明组织,由小带纤维悬挂于瞳孔后面,睫状肌收缩时小带松弛,晶状体依靠其本身的弹性而变厚,前后表面的曲度增加,整体屈光度增加,利于看清近处物体,称为调节。在角膜和水晶体之间为虹膜,中间开有一个可以自动控制大小的孔,让适当的光线进来,称为瞳孔。前房、

11、后房。前房为角膜后面、虹膜和晶状体前面的空隙,充满着房水。后房为位于虹膜后面、睫状体、晶状体周边部之间的空隙,也充满着房水。房水的主要功能是维持眼内压,并维持晶状体的代谢。玻璃体,为一透明胶样组织,充填于视网膜内的空间。占眼球4/5的容积。具有保护视网膜、缓冲震动的功能。视网膜是接近黑的深红色,反光很弱,其上面布满感光细胞。正对眼球中心有一个直径约2mm的黄色区域(折合6度视角),称为黄斑。黄斑中心有一小凹,称为中央凹,面积约1平方毫米。视网膜上有两种感光细胞,一种叫做视锥细胞,另一种叫做视杆细胞,均以它们外表的形状命名。一只眼睛里面大约分别有7百万视锥细胞和1亿两千万视杆细胞。视锥细胞是像一

12、个玉米的锥形,尖向外,只对较强的光敏感,至少有分别感觉红、绿、蓝三种颜色的视锥细胞存在,因此能够感知颜色;视杆细胞只有一种,因此没有颜色感觉,但灵敏度非常高,可以看到非常暗的物体。视锥细胞在黄斑里面非常集中,尤其是在中央凹里面最为密集,是产生最清晰视觉的地方。视杆细胞恰好在黄斑里面最少,除此之外分布的比较均匀,距离中心1020度的范围内相对集中些。人眼前面等效与一个比较理想的镜头,其焦距为17mm(物方)和23mm(像方),相对光圈为f/2.1f/8.4(对应2mm8mm的瞳孔大小)。眼球前后直径与像方焦距相同,为23mm,也相当于+43D曲光度。三、人眼的特性1、衡量人眼分辨力的参数:视力与

13、望远镜的分辨力类似,视力表明人眼能够分辨两个距离很近物体的能力。通常采用兰道尔环,如图所示,在5m远处观察直径为7.5mm、环粗和开口均为1.5mm的环,此时该开口形成1角分的角度,如果刚好能够分辨,则视力为1.0。若刚好能够识别比这大一倍的环,则视力为0.5。2、分辨本领通常我们所说的人眼的视力,是指在明亮环境下,注视点的视力,也叫中心视力。注视点对应人眼的黄斑,是人眼视觉细胞最密集的地方,因此也是视力最好的地方。偏离中心2度的角度,则视力下降为1/2,偏离中心10度,则下降为1/10。这是因为,对于明亮物体,主要是视锥细胞在起作用,而视锥细胞主要集中在大约半径为3度的黄斑里面,外边分布比较

14、稀少,因此分辨本领不佳,在偏离中心20度的角度时,视力不还到0.1。右图表明视力是如何随角度而变化的,是在亮度为5尼特时的标准特性。尽管周边视力不佳,但对于运动物体和闪动非常敏感。例如,直接观察日光灯管的一端,不会看到50Hz的闪动,而用余光观察,一般可以看到闪动。在比较黑暗的地点,例如在亮度为0.01尼特的情况下,视锥细胞就不再起作用,只能是分布广而相对稀疏的视杆细胞起作用,因此人眼的分辨能力大为下降,中心黄斑部分视力下降到0.05,反而不如黄斑以外(因为中心黄斑几乎没有视杆细胞),非黄斑区域视力基本不变,最好视力在黄斑边缘附近,大约偏离中心15度左右,为0.1。这时的视力,称为暗视觉。但由

15、于视杆细胞只有一种,因此是分辨不出物体颜色的,因此我们观察星云时(其表面亮度大多在0.01尼特以下),看不出颜色。有关视力与亮度之间的关系,是逐渐变化的,见本文章的第四部分。人眼的这个视觉曲线,是与感觉细胞的密度直接相关的,换句话说,视力曲线上的某一点与视网膜上相应的感觉细胞的密度有换算关系。从另外一个角度来看,由于在5尼特的亮度情况下人的瞳孔直径约为2.5mm,因此,根据瑞利判据,其理论分辨力为140/2.5=56角秒,这与人眼中心的最佳视力是非常匹配的。但是,若光线变暗,瞳孔直径会变大,尽管理论分辨能力也会提高,但人眼光学系统不是理想系统,像差会随光圈的增大而加大,不过恰巧人眼的后部感觉细

16、胞在这个时候分辨能力也随之下降,因此感觉不到这样的像差。这一巧妙的配合,是眼睛在长期进化的过程中适应的。3、视觉角度人的眼同时可以看到前方物体的角度,称为视角。从小到大排列,共有5小类:A、单眼视角。一只眼睛,看正前方,眼球不可转动,头向前方不可动。则(以右眼为例)上面可见50度,下面70度,左边60度,右边100度。B、同上,但头可以动。这样,可以比较完整的表现眼球的视觉范围而把眼框、鼻子的遮挡去掉。其结果是,上面可见55度,下面75度,左边60度,右边100度。奇怪的是,左右角度没有变化。C、同A但为双眼视角。则上下角度一样(共120度),左右分别为100度(共200度)。D、同B但为双眼视角。则上下角度一样(共130度),左右分别为100度(共200度)。E、单眼视角,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号