2019高考物理知识点之磁场

上传人:【**** 文档编号:121291326 上传时间:2020-02-20 格式:DOC 页数:8 大小:1.39MB
返回 下载 相关 举报
2019高考物理知识点之磁场_第1页
第1页 / 共8页
2019高考物理知识点之磁场_第2页
第2页 / 共8页
2019高考物理知识点之磁场_第3页
第3页 / 共8页
2019高考物理知识点之磁场_第4页
第4页 / 共8页
2019高考物理知识点之磁场_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《2019高考物理知识点之磁场》由会员分享,可在线阅读,更多相关《2019高考物理知识点之磁场(8页珍藏版)》请在金锄头文库上搜索。

1、高考物理知识点之磁场考试要点基本概念一、磁场和磁感线(三合一)1、磁场的来源:磁铁和电流、变化的电场2、磁场的基本性质:对放入其中的磁铁和电流有力的作用3、磁场的方向(矢量)方向的规定:磁针北极的受力方向,磁针静止时N极指向。4、磁感线:切线磁针北极磁场方向 地球磁场 通电直导线周围磁场 通电环行导线周围磁场5、典型磁场磁铁磁场和电流磁场(安培定则(右手螺旋定则)6、磁感线特点: 客观不存在、 外部N极出发到S,内部S极到N极 闭合、不相交、 描述磁场的方向和强弱二磁通量( 韦伯 Wb 标量)通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通二磁通密度(磁感应强度B 特斯拉T 矢量) 大小:

2、通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。 1 T = 1 Wb / m2NS 方向:B的方向即为磁感线的切线方向 意义:1、描述磁场的方向和强弱 2、由场的本身性质决定三匀强磁场1、定义:B的大小和方向处处相同,磁感线平行、等距、同向2、来源:距离很近的异名磁极之间通电螺线管或条形磁铁的内部,边缘除外四了解一些磁场的强弱L 永磁铁10 3 T,电机和变压器的铁芯中0.81.4 T超导材料的电流产生的磁场1000T,地球表面附近31057105 T比较两个面的磁通的大小关系。如果将底面绕轴L旋转,则磁通量如何变化? 磁场对电流的作用安培力一安培力的方向 (左手定则)伸开左手,使大

3、拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。(向里和向外的表示方法(类比射箭)力向外BIF规律:(1)左手定则 (2)FB ,FI,F垂直于B和I所决定的平面。但B、I不一定垂直力向外不受力 安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力0。猜想由90度到0度力的大小是怎样变化的二安培力的大小:匀强磁场,当B I 时,F B I L 在匀强磁场中,当通电导线与磁场方向垂直时,电流所受的安培力等于磁感应将度B、电流I和导线的长度L三者的乘积 在非匀强磁场中,公式FBIL近似适用于

4、很短的一段通电导线三磁感应强度的另一种定义B B匀强磁场,当B I 时,练习有磁场就有安培力()磁场强的地方安培力一定大()磁感线越密的地方,安培力越大()判断安培力的方向电流间的相互作用和等效长度转向同向, 同时靠近一电流间的相互作用转向同向, 同时靠近F同向吸引F同向排斥F总结:通电导线有转向电流同向的趋势L二等效长度 推导:水平方向:向左F1 sin BIL1 sin B I h 向右F2 sin BIL2 sin B I h 水平方向平衡竖直方向:左导 F1 cos BIL1 cos 右导 F2 cos BIL2 cos F B I LNSa db cL2L1向上看ab推广:等效长度为

5、导线两端连线的长度一 洛伦兹力的方向左手定则:四指指向正电荷的运动方向或负电荷运动的反方向大拇指指向洛伦兹力的方向f B f v vFFvv力向里4、q、v、B三者有一个或三个“反向”,则f变向 若有两个“反向”则f反向不变(1)电荷静止,f0(2)vB,f0(3)vB,f 最大A B二洛伦兹力的大小已知:I B匀强、导线截面积s、电荷电量q、电荷定向移动速率v单位体积内电荷数n、导线长度L有: 三洛伦兹力不做功1、判断三种粒子电荷的正负2、三个完全相同的金属带电球,同一高度,同时下落(1)落地速度V1 V3 V2 (2)下落时间 t1 t2 t3 vFf = 2eBvEB四、带 电 粒 子

6、的 圆 周 运 动1、运动状态匀速圆周运动v 匀强B,忽略重力f v,洛伦兹力不做功,速率不变f q v B,充当向心力2轨道半径和周期半径周期 周期与速率无关,对于确定的磁场,周期取决于荷质比。五、电流表构造:蹄形磁铁和铁芯间的磁场是均匀地福向分布的(2)铝框上绕有线囵,铝框转轴上装有两个螺旋弹簧和一个指针六、安培分子电流假说 导体中的电流是由大量的自由电子的定向移动而形成的,而电流的周国又有磁场,所以电流的磁场应该是由于电荷的运动产生的那么,磁铁的磁场是否也是由电荷的运动产生的呢? 安培提出在磁铁中分子、原于存在着一种环形电流一一分子电流,分子电流使每个物质微粒都成为微小的磁体磁铁的分子电

7、流的取向大致相同时,对外显磁性;磁铁的分子电流取向杂乱无章时,对外不显磁性。近代的原子结构理论证实了分子电流的存在根据物质的微观结构理论,微粒原子由原子核和核外电子组成,原子核带正电,核外电子带负电,电子在库仑力的作用下,绕核高速旋转,形成分子电流可见,磁铁和电流的磁场本质上都是运动电荷产生的三种场力的特点1、重力的特点:其大小为mg,方向竖直向下;做功与路径无关,与带电粒子的质量及起、讫点的高度差有关2、电场力的特点:大小为qE,方向与E的方向及电荷的种类有关;做功与路径无关,与带电粒子的带电量及起、终点的电势差有关3、洛伦兹力的特点:大小与带电粒子的速度、磁感应强度、带电量及速度与磁感应强

8、度间的夹角有关,方向垂直于B和V决定的平面;无论带电粒子在磁场中做什么运动,洛伦兹力都不做功一 、速度选择器的原理U加速电场带电粒子束V偏转电场E偏转磁场BqS2S11、原理图VfF2、带电粒子的受力特点:电场力F与洛仑兹力f方向相反3、带电粒子匀速通过速度选择器的条件:带电粒子匀速通过速度选择器是指粒子从S1水平射入,沿直线匀速通过叠加场区,并从S2水平射出。从力的角度看,电场力F与洛仑兹力f平衡,即 推出 二质谱仪分离同位素测定荷质比的仪器经速度选择器的各种带电粒子,射入偏转磁场(B),不同电性,不同荷质比的粒子就会沉积在不同的地方由qE=qvB, s=2R,联立,得不同粒子的荷质比即与沉

9、积处离出口的距离s成反比三、磁流体发电机磁流体发电高速的等离子流射入平行板中间的匀强磁场区域,在洛仑兹力作用下使正、负电荷分别聚集在A、B两板,于是在板间形成电场当板间电场对电荷的作用力等于电荷所受的洛仑兹力时,两板间形成一定的电势差合上电键S后,就能对负载供电dba导电液体由 qvB=qE 和 U=Ed,得两板间的电势差(电源电动势)为=U=vBd即决定于两板间距,板间磁感强度和入射离子的速度四、电磁流量计如图所示为电磁流量计的示意图,直径为d的非磁性材料制成的圆形导管内,有可以导电的液体流动,磁感应强度为B的匀强磁场垂直液体流动方向而穿过一段圆形管道。若测得管壁内a、b两点的电势差为U,试

10、求管中液体的流量Q为多少m3/s解; 得 五、霍尔效应hdBIAA如图所示,厚度为h,宽度为d的导体板放在垂直于它的磁感应强度为B的匀强磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A会产生电势差。这种现象称为霍尔效应。实验表明,当磁场不太强时,电势差U、电流I的B的关系为:式中的比例系数K称为霍尔系数。霍尔效应可解释如下:外部磁场的洛仑兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场。横向电场对电子施加与洛仑兹力方向相反的静电力。当静电力与洛仑兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。六、测定电子的比荷阴极阴极CABDEF在实验中

11、,汤姆生采用了如图所示的阴极射线管,从电子枪C出来的电子经过A、B间的电场加速后,水平射入长度为L的D、E平行板间,接着在荧光屏F中心出现荧光斑。若在D、E间加上方向向下、场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、E电场区加上一垂直纸面的磁感应强度为B的匀强磁场(图中未画出)荧光斑恰好回到荧光屏中心。接着再去掉电场,电子向下偏转,偏转角为。七、回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。A0处带正电的粒子源发出带正电的粒子以速度v0垂直进入匀强磁场,在磁场中匀速转动半个周期

12、,到达A1时,在A1 A1/处造成向上的电场,粒子被加速,速率由v0增加到v1,然后粒子以v1在磁场中匀速转动半个周期,到达A2/时,在A2/ A2处造成向下的电场,粒子又一次被加速,速率由v1增加到v2,如此继续下去,每当粒子经过A A/的交界面时都是它被加速,从而速度不断地增加。带电粒子在磁场中作匀速圆周运动的周期为,为达到不断加速的目的,只要在A A/上加上周期也为T的交变电压就可以了。即T电=实际应用中,回旋加速是用两个D形金属盒做外壳,两个D形金属盒分别充当交流电源的两极,同时金属盒对带电粒子可起到静电屏蔽作用,金属盒可以屏蔽外界电场,盒内电场很弱,这样才能保证粒子在盒内只受磁场力作

13、用而做匀速圆周运动。(2)带电粒子在D形金属盒内运动的轨道半径是不等距分布的设粒子的质量为m,电荷量为q,两D形金属盒间的加速电压为U,匀强磁场的磁感应强度为B,粒子第一次进入D形金属盒,被电场加速1次,以后每次进入D形金属盒都要被电场加速2次。粒子第n次进入D形金属盒时,已经被加速(2n-1)次。由动能定理得(2n1)qU=Mvn2。 第n次进入D形金属盒后,由牛顿第二定律得qvnB=m 由两式得n=同理可得第n+1次进入D形金属盒时的轨道半径rn+1=所以带电粒子在D形金属盒内任意两个相邻的圆形轨道半径之比为,可见带电粒子在D形金属盒内运动时,轨道是不等距分布的,越靠近D形金属盒的边缘,相邻两轨道的间距越小。(3)带电粒子在回旋加速器内运动

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号