数字温度计的设计与仿真设计

上传人:xmg****18 文档编号:121234877 上传时间:2020-02-19 格式:DOC 页数:30 大小:519KB
返回 下载 相关 举报
数字温度计的设计与仿真设计_第1页
第1页 / 共30页
数字温度计的设计与仿真设计_第2页
第2页 / 共30页
数字温度计的设计与仿真设计_第3页
第3页 / 共30页
数字温度计的设计与仿真设计_第4页
第4页 / 共30页
数字温度计的设计与仿真设计_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《数字温度计的设计与仿真设计》由会员分享,可在线阅读,更多相关《数字温度计的设计与仿真设计(30页珍藏版)》请在金锄头文库上搜索。

1、.专业整理.单片机原理与应用设计课程综述设计项目 数字温度计 任课教师 班级 姓名 学号 日期 基于AT89C51的数字温度计设计与仿真摘 要:随着科学技术的不断发展,温度的检测、控制应用于许多行业,数字温度计就是其中一例,它的反应速度快、操作简单,对环境要求不高,因此得到广泛的应用。传统的温度测量大多使用热敏电阻,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路将模拟信号转换成数字信号才能由单片机进行处理。本课题采用单片机作为主控芯片,利用DS18B20来实现测温,用LCD液晶显示器来实现温度显示。温度测量范围为0119,精确度0.1。可以手动设置温度上下限报警值,当温度超

2、出所设报警值时将发出报警鸣叫声,并显示温度值,该温度计适用于人们的日常生活和工、农业生产领域。关键词:数字温度计;DS18B20;AT89C51; LCD1602一、绪 论1.1 前言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求也越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,单片机已经在测控领域中获得了广泛的应用。1.2 课题的目的及

3、意义数字温度计与传统温度计相比,具有结构简单、可靠性高、成本低、测量范围广、体积小、功耗低、显示直观等特点。该设计使用AT89C51,DS18B20以及通用液晶显示屏1602LCD等。通过本次设计能够更加了解数字温度计工作原理和熟悉单片机的发展与应用,巩固所学的知识,为以后工作与学习打下坚实的基础。数字温度计主要运用在工业生产和实验研究中,如电力、化工、机械制造、粮食存储等领域。温度是表征其对象和过程状态的重要参数之一。比如:发电厂锅炉温度必须控制在一定的范围之内,许多化学反应必须在适当的温度下才能进行。没有合适的温度环境,许多电子设备就不能正常工作。因此,温度的测量和控制是非常重要的。1.3

4、 该论文研究的内容通过对目前各种温度传感器的分析与研究,对温度传感器做出合理选择,并根据实际需要选择合适的主芯片和显示器,达到优化整体结构,提高温度检测精度,同时使系统具有测温范围广、体积小、功耗低、精度高、显示直观等优点,并保证系统结构简洁。本课题的研究重点将放在元器件介绍、硬件电路和程序设计这三个方面。总之,本课题研究出一套简洁实用、精确稳定、使用直观的便携式数字温度计。二、设计方案2.1 方案1:使用电阻元件由于本设计是测温电路,可以使用热敏电阻之类的器件,利用其感温效应将被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示

5、出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。2.2 方案2:使用数字温度传感器在单片机电路设计中,大多都是使用传感器3,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。方案二,电路比较实用,软件设计也比较简单,故采用了方案二。2.3 方案2的总体设计框图温度计电路设计总体方框图如图2.1所示,控制器采用单片机AT89C51,温度传感器采用DS18B20,用LCD液晶显示屏以串口传送数据实现温度显示8。图2.1 总体设计框图2.3.1 温度传感器DS18B20温度传感器是美国DALLAS半导体公司最

6、新推出的一种改进型智能温度传感器,是一线式数字式温度计芯片,体积更小、适用电压更宽、更经济。它具有结构简单,不需外接元件等特点。与传统的热敏电阻测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现912位的数字值,使系统设计更灵活、方便。1. DS18B20的性能特点如下6l 独特的单线接口仅需要一个端口引脚进行通信;l 多个DS18B20可以并联在惟一的三线上,实现多点组网功能;l 无须外部器件;l 可通过数据线供电,电压范围为3.05.5V;l 零待机功耗;l 温度用9或12位数字;l 用户可定义报警设置;l 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件

7、;l 负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。2. DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2.2所示。图2.2 DS18B20外形图引脚定义: (1) DQ为数字信号输入/输出端; (2) GND为电源地; (3) VDD为外接供电电源输入端(在寄生电源接线方式时接地)。其内部结构框图如图2.3所示:图2.3 DS18B20内部结构64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CR

8、C检验码11,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入用户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。高速暂存RAM的结构为8字节的存储器,结构如图2.3所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。该字节各位的定义如图2.4所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还

9、是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。温度 LSB温度 MSBTH用户字节1TL用户字节2配置寄存器保留保留保留CRC 图2.4 DS18B20字节定义DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式

10、存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625LSB形式表示5。当符号位S0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表2.1是一部分温度值对应的二进制温度数据。DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B20就对

11、低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初

12、使化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据表2.1 一部分温度对应值表温度/二进制表示十六进制表示+1250000 0111 1101 000007D0H+850000 0101 0101 00000550H+25.06250000 0001 1001 00000191H+10.1250000 0000 1010 000100A2H+0.50000 0000 0000 00100008H00000 0000 0000 10000000H 2.3.2 1602LCD模块显示特性4单5V电源电压,低功耗、长寿命、高可靠性内置192种字符(160个57点阵字符和32个5

13、10点阵字符)具有64个字节的自定义字符RAM,可定义8个58点阵字符或四个511点阵字符显示方式:STN、半透、正显驱动方式:1/16DUTY,1/5BIAS视角方向:6点背光方式:底部LED通讯方式:4位或8位并口可选标准的接口特性,适配MC51和M6800系列MPU的操作时序1. 1602LCD模块接口定义图2.5 1602LCD引脚外形图1602LCD采用标准的14脚(无背光)接口,各引脚接口说明如表2.2所示。表2.2 1602LCD接口定义表管脚定义符号功能1Vss电源地(GND)2Vdd电源电压(5V)3VEELCD驱动电压(可调)4RS寄存器选择输入端,输入MPU选择模块内部寄

14、存器类型号;RS=0,当MPU行进写模块操作,指向指令寄存器;当MPU进行读模块操作,指向地址计数器;RS=1,无论MPU读操作还是写操作,均指向数据寄存器5R/W读写控制输入端,输入MPU选择读/写模块操作操作信号:R/W0 读操作;R/W1 写操作6E使能信号输入端,输入MPU读/写模块操作使能信号:读操作时,高电平有效;写操作时,下降沿有效7DB0数据输入/输出口,MPU与模块之间的数据传送通道8DB1数据输入/输出口,MPU与模块之间的数据传送通道9DB2数据输入/输出口,MPU与模块之间的数据传送通道10DB3数据输入/输出口,MPU与模块之间的数据传送通道11DB4数据输入/输出口,MPU与模块之间的数据传送通道12DB5数据输入/输出口,MPU与模块之间的数据传送通道13DB6数据输入/输出口,MPU与模块之间的数据传送通道1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号