2013年北京市一零一中学高中化学竞赛+第1讲+气体

上传人:灯火****19 文档编号:120967396 上传时间:2020-02-13 格式:DOC 页数:10 大小:937.53KB
返回 下载 相关 举报
2013年北京市一零一中学高中化学竞赛+第1讲+气体_第1页
第1页 / 共10页
2013年北京市一零一中学高中化学竞赛+第1讲+气体_第2页
第2页 / 共10页
2013年北京市一零一中学高中化学竞赛+第1讲+气体_第3页
第3页 / 共10页
2013年北京市一零一中学高中化学竞赛+第1讲+气体_第4页
第4页 / 共10页
2013年北京市一零一中学高中化学竞赛+第1讲+气体_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《2013年北京市一零一中学高中化学竞赛+第1讲+气体》由会员分享,可在线阅读,更多相关《2013年北京市一零一中学高中化学竞赛+第1讲+气体(10页珍藏版)》请在金锄头文库上搜索。

1、高中化学奥林匹克竞赛辅导讲座第1讲 气 体【竞赛要求】气体。理想气体标准状态。理想气体状态方程。气体密度。分压定律。气体相对分子质量测定原理。【知识梳理】一、气体 气体、液体和固体是物质存在的三种状态。气体的研究对化学学科的发展起过重大作用。气体与液体、固体相比较,具有两个明显特点。1、扩散性 当把一定量的气体充入真空容器时,它会迅速充满整个容器空间,而且均匀分布,少量气体可以充满很大的容器,不同种的气体可以以任意比例均匀混合。2、可压缩性当对气体加压时,气体体积缩小,原来占有体积较大的气体,可以压缩到体积较小的容器中。二、理想气体如果有这样一种气体:它的分子只有位置而无体积,且分子之间没有作

2、用力,这种气体称之为理想气体。当然它在实际中是不存在的。实际气体分子本身占有一定的体积,分子之间也有吸引力。但在低压和高温条件下,气体分子本身所占的体积和分子间的吸引力均可以忽略,此时的实际气体即可看作理想气体。三、理想气体定律1、理想气体状态方程将在高温低压下得到的波义耳定律、查理定理和阿佛加德罗定律合并,便可组成一个方程:pV= nRT (1-1) 这就是理想气体状态方程。式中p是气体压力,V是气体体积,n是气体物质的量,T是气体的绝对温度(热力学温度,即摄氏度数+273),R是气体通用常数。在国际单位制中,它们的关系如下表:表1-1 R的单位和值pVnTR国际单位制Pam3molK8.3

3、14或kPadm3molK8.314(1-1)式也可以变换成下列形式:pV= RT (1-2)p = = 则: = (1-3)式中m为气体的质量,M为气体的摩尔质量,为气体的密度。对于一定量(n一定)的同一气体在不同条件下,则有: = (1-4)如果在某些特定条件下,将(1-1)、(1-2)和(1-3)式同时应用于两种不同的气体时,又可以得出一些特殊的应用。如将(1-1)式n =,在等温、等压、等容时应用于各种气体,则可以说明阿佛加德罗定律。因为物质的量相等的气体,含有相等的分子数。若将(1-2)式 = 在等温、等压和等容时应用于两种气体,则得出: = (1-5)如果将(1-3)式= ,在等温

4、等压下应用于两种气体,则有: = (1-6)若令 = D ,D为第一种气体对第二种气体得相对密度,则有:D = 或 M1 = DM2 (1-7)已知M = 2gmol,= 29gmol 则 M1 = 2 D 或 M1 = 29DD为某气体相对H2的密度,D为某气体相对空气的密度。2、气体分压定律和分体积定律(1)气体分压定律当研究对象不是纯气体,而是多组分的混合气体时,由于气体具有均匀扩散而占有容器全部空间的特点,无论是对混合气,还是混合气中的每一组分,均可按照理想气体状态方程式进行计算。当一个体积为V的容器,盛有A、B、C三种气体,其物质的量分别为nA、nB、nC,每种气体具有的分压分别是p

5、A、pB、pC,则混合气的总物质的量为: n= nA + nB + nC (1-8)混合气的总压为: p = pA + pB + pC (1-9)在一定温度下,混合气体的总压力等于各组分气体的分压力之和。这就是道尔顿分压定律。计算混合气各组分的分压有两种方法。根据理想气态方程计算在一定体积的容器中的混合气体pV = nRT ,混合气中各组分的分压,就是该组分单独占据总体积时所产生的压力,其分压数值也可以根据理想气态方程式求出:pAV = nART (1-10) pBV = nBRT (1-11) pCV = nCRT (1-12)根据摩尔分数计算:摩尔分数(XA)为混合气中某组分A的物质的量与

6、混合气的总的物质的量之比: XA = (1-13)混合气体中某组分的分压等于总压与摩尔分数的乘积: pA = pXA (1-14)(2)气体分体积定律在相同的温度和压强下,混合气的总体积(V)等于组成混合气的各组分的分体积之和:V = VA +VB + VC (1-15)这个定律叫气体分体积定律。根据混合物中各组分的摩尔分数等于体积分数,可以计算出混合气中各组分的分体积:据 = 得 VA = V (1-16)四、实际气体状态方程理想气体定律是从实验中总结出来的,并得到了理论上的解释。但应用实际气体时,它只有一定的适用范围(高温低压),超出这个范围就有偏差,必须加以修正。对于实际气体的实验值与理

7、想值的偏差,我们常用压缩系数Z来表示:Z = 其中p、T都是实验值。若气体完全理想,则Z = 1,否则Z1或Z1。出现这种偏差,是由于实际气体分子本身的体积不容忽视,那么实测体积总是大于理想状态体积(即V = V b);实际上分子之间也不可能没有吸引力(内聚力P),这种吸引力使气体对器壁碰撞产生的压力减小,使实测压力要比理想状态压力小(即p = p + p),所以Z1。实际上以上两种因素同时存在,前者起主导作用时,Z1,后者起主导作用时,Z1,若两种因素恰好相当,则Z = 1(CO2在40和52 MPa时)。将以上修正项代入理想气体状态方程,即得: (p + p)( b) = RTp既与容器内

8、部得分子数目成正比,又与近壁分子数目成正比。这两种分子数目又都与气体的密度成正比,所以 p2而,所以 p()2 或 p = 则 (p +)( b) = RT对于n摩尔气体来说,则, (p + )(V nb)= nRT (1-17)注意,上式中p、V、T都是实测值;a和b都是气体种类有关的特性常数,统称为范德华常数。(1-17)式称为范德华方程。它是从事化工设计必不可少的依据。五、气体相对分子质量测定原理1、气体相对分子质量测定由(1-3)式: = ,可以变换成以下形式:M = (1-18)可见,在一定温度和压强下,只要测出某气体的密度,就可以确定它的相对分子质量。2、气体精确相对分子质量测定根

9、据M = RT,理想气体在恒温下的/p值应该是一个常数,但实际情况不是这样。如:在273 K时测得CH3F蒸气在不同压力下的值及/p值如下表:p/Pa/(gm-3)/(p10-2)1.0131051.54541031.52556.7531051.02411031.52123.3751040.50911031.5084从表中数据可以看到,压力越大,/p越大,不是常数。因为压力越大,气体分子间的吸引力越大 ,分子本身的体积也不能忽略,因而就不能用理想气体状态方程来描述了,所以对于实际气体/p不是一个常数。以/p对作图(图1-1)如果将直线内推到p = 0时,则CH3F这一实际气体已接近理想气体,所

10、以从图上所得的(/p) = 1.5010-2是符合理想气体状态方程的。若将(/p) 之值代入理想气体状态方程M = RT,即可求得CH3F的精确分子量。这种求气体分子量的方法,叫极限密度法。 M = ()RT = 1.5010-2gdm-3k Pa-18.314 k Padm3mol-1K-1273.16K = 34.05 gmol-1故CH3F的分子量为34.02。按相对原子质量计算:M = 12.011 + 31.0079 + 18.9984 = 34.033两者结果非常接近。【典型例题】例1、300K、3.30105 Pa时,一气筒含有480g的氧气,若此筒被加热到373K,然后启开活门

11、(温度保持373K)一直到气体压强降低到1.01105 Pa时,问共放出多少重的氧气?分析:因为pV =nRT,n = ;所以pV = RT,由此式求出气筒的体积。然后再根据气态方程式求出压强降到1.01105 Pa,气筒内剩余氧气的质量m。最后算出放出氧气的质量。解:pV = RT则气筒的体积:V = = = 0.123 m3再根据方程式求压强降低到1.01105 Pa时,气筒内剩余氧气的质量mm = = = 128 g因此放出氧气的质量m= 480-128 = 352 g例2、设有一真空的箱子,在288 K时,1.01105 Pa的压力下,称量为153.679 g,假若在同温同压下,充满氯

12、气后为156.844 g;充满氧气后为155.108 g,求氯气的分子量。分析:M=32.00gmol-1,若将pV= RT 式先用于氧气 ,求出箱子的体积V,再将 pV= RT式用于氯气,求出M,这当然是可行的。但运算繁杂,既费时又易出错。由题意可知,这实际上是在等温、等压和等容条件下,pV= RT式的两次应用。所以可以直接用 = 式,则简便得多。解:M= 155.108g 153.679g = 1.429g M= 156.844g 153.679g =3.165g M= = = 70.87gmol-1故氯气的分子量为70.87。例3、某砷的氧化物化学式为As2O3,加热升温气化,实验测得在

13、101 k Pa和844 K时,其蒸气密度为5.70 g/L。计算:该氧化物的相对分子质量,并求其分子式。分析:依据题目给出的一定温度和压强下的气体密度,可以算出气体的相对分子质量。由pV= nRT 可得 M = 因为 = , 所以 M = 根据化学式As2O3可以算出式量,用相对分子质量除以式量,即可确定气态氧化物的分子式。解:气态氧化物的相对分子质量(M)为:M = = = 396 As2O3的式量为:752+163 =198所以,在气态时这种砷的氧化物的分子式是As4O6 。例4、在298K,101000 Pa时,用排水集气法收集氢气,收集到335 mL。已知298K时水的饱和蒸气压为3

14、200 Pa,计算:(1)氢气的分压是多少? (2)收集的氢气的物质的量为多少?(3)这些氢气干燥后的体积是多少(干燥后气体温度,压强视为不变)?分析:用排水集气法收集的氢气,实际上是氢气和水蒸气的混合气。可由气体分压定律:p = p + p ,计算得氢气的分压。再利用理想气体气态方程式:pV = nRT求出氢气的物质的量n ,根据p = p 算出V 。解:(1)混合气中氢气的分压p为:p = p p = 101000 Pa 3200 Pa = 97800 Pa(2)所得氢气的物质的量n (H2) n = = = 0.0140 mol注意:R = 8.314(Pam3mol-1K-1) ,V必须用m3作单位,355

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号