专题14 数列的综合应用(解析版)

上传人:烟*** 文档编号:119498703 上传时间:2020-01-17 格式:DOCX 页数:26 大小:461.23KB
返回 下载 相关 举报
专题14 数列的综合应用(解析版)_第1页
第1页 / 共26页
专题14 数列的综合应用(解析版)_第2页
第2页 / 共26页
专题14 数列的综合应用(解析版)_第3页
第3页 / 共26页
专题14 数列的综合应用(解析版)_第4页
第4页 / 共26页
专题14 数列的综合应用(解析版)_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《专题14 数列的综合应用(解析版)》由会员分享,可在线阅读,更多相关《专题14 数列的综合应用(解析版)(26页珍藏版)》请在金锄头文库上搜索。

1、专题14 数列的综合应用1、【2018年高考江苏卷】已知集合,将的所有元素从小到大依次排列构成一个数列记为数列的前n项和,则使得成立的n的最小值为_【答案】27【解析】所有的正奇数和按照从小到大的顺序排列构成,在数列|中,25前面有16个正奇数,即.当n=1时,不符合题意;当n=2时,不符合题意;当n=3时,不符合题意;当n=4时,不符合题意;当n=26时,不符合题意;当n=27时,,符合题意.故使得成立的n的最小值为27.2、【2019年高考天津卷文数】设是等差数列,是等比数列,公比大于0,已知.(1)求和的通项公式;(2)设数列满足求.【解析】(1)设等差数列的公差为,等比数列的公比为.依

2、题意,得解得故.所以,的通项公式为,的通项公式为.(2) .记则得,.所以, .本小题主要考查等差数列、等比数列的通项公式及前项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.3、【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M数列”.(1)已知等比数列an满足:,求证:数列an为“M数列”;(2)已知数列bn满足:,其中Sn为数列bn的前n项和求数列bn的通项公式;设m为正整数,若存在“M数列”cn,对任意正整数k,当km时,都有成立,求m的最大值【解析】(1)设等比数列an的公比为q,所以a10,q0.由,得,解得因此数列为“M数列”.(2)因为,所以

3、由,得,则.由,得,当时,由,得,整理得所以数列bn是首项和公差均为1的等差数列.因此,数列bn的通项公式为bn=n.由知,bk=k,.因为数列cn为“M数列”,设公比为q,所以c1=1,q0.因为ckbkck+1,所以,其中k=1,2,3,m.当k=1时,有q1;当k=2,3,m时,有设f(x)=,则令,得x=e.列表如下:xe(e,+) +0f(x)极大值因为,所以取,当k=1,2,3,4,5时,即,经检验知也成立因此所求m的最大值不小于5若m6,分别取k=3,6,得3q3,且q56,从而q15243,且q15216,所以q不存在.因此所求m的最大值小于6.综上,所求m的最大值为5本题主要

4、考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力4、【2019年高考浙江卷】设等差数列的前n项和为,数列满足:对每个成等比数列(1)求数列的通项公式;(2)记 证明:【解析】(1)设数列的公差为d,由题意得,解得从而所以,由成等比数列得解得所以(2)我们用数学归纳法证明(i)当n=1时,c1=00时,所以单调递减,从而f(0)=1当时,因此,当时,数列单调递减,故数列的最小值为因此,d的取值范围为一、求通项公式的方法1、累加(累乘法)(1)累加法:如果递推公式形式为:,则可利用累加法求通项公式 等号右边为关于的表达式,且能够进行

5、求和 的系数相同,且为作差的形式二、数列的求和的方法(1)等差数列求和公式: (2)等比数列求和公式: (3)错位相减法:通项公式的特点在错位相减法的过程中体现了怎样的作用?通过解题过程我们可以发现:等比的部分使得每项的次数逐次递增,才保证在两边同乘公比时实现了“错位”的效果。而等差的部分错位部分“相减”后保持系数一致(其系数即为等差部分的公差),从而可圈在一起进行等比数列求和。体会到“错位”与“相减”所需要的条件,则可以让我们更灵活的使用这一方法进行数列求和(4)裂项相消:的表达式能够拆成形如的形式(),从而在求和时可以进行相邻项(或相隔几项)的相消。从而结果只存在有限几项,达到求和目的。其

6、中通项公式为分式和根式的居多(5)分组求和 如果数列无法求出通项公式,或者无法从通项公式特点入手求和,那么可以考虑观察数列中的项,通过合理的分组进行求和(1)利用周期性求和:如果一个数列的项按某个周期循环往复,则在求和时可将一个周期内的项归为一组求和,再统计前项和中含多少个周期即可(2)通项公式为分段函数(或含有 ,多为奇偶分段。若每段的通项公式均可求和,则可以考虑奇数项一组,偶数项一组分别求和,但要注意两点:一是序数的间隔(等差等比求和时会影响公差公比),二是要对项数的奇偶进行分类讨论(可见典型例题);若每段的通项公式无法直接求和,则可以考虑相邻项相加看是否存在规律,便于求和(3)倒序相加:

7、若数列中的第项与倒数第项的和具备规律,在求和时可以考虑两项为一组求和,如果想避免项数的奇偶讨论,可以采取倒序相加的特点,三、数列中的单调性1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点2、如何判断数列的单调性:(1)函数角度:从通项公式入手,将其视为关于的函数,然后通过函数的单调性来判断数列的单调性。由于 ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为 的函数,得到函数的单调性后再结合得到数列的单调性(2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的

8、单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列)3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识来进行处理。比如:含的表达式就可以看作是一个数列的通项公式;某数列的前项和也可看做数列等等。4、对于某数列的前项和,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:,所以的增减由所加项的符号确定。进而把问题转化成为判断的符号问题四、放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据不等

9、式的性质:(1)传递性:若,则(此性质为放缩法的基础,即若要证明,但无法直接证明,则可寻找一个中间量,使得,从而将问题转化为只需证明即可 )(2)若,则,此性质可推广到多项求和:若,则: (3)若需要用到乘法,则对应性质为:若,则,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: 等差数列求和公式:,(关于的一次函数或常值函数) 等比数列求和公式:,(关于的指数类函数) 错位相减:通项公式为“等差等比”的形式 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正

10、负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧: 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向) 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。题型一、数列中的通项与求和 数列中求通项、求和是最基本,也是最重要的问题,在试题的条件中经常会出现含有和Sn与项an的等式,这往往是问题的突破口,经常会使用退位(或进位)相减的方式,使问题转化为相邻项之间的关系,如果满足等差(或等比)数列的定义那就更

11、好,否则就是常规递推关系问题,通过构造等比数列解决问题的;而数列求和,则应根据通项的特点选择对应的求和方法,其中错位相减法和裂项相消法经常考到。例1、(2018扬州期末)已知各项都是正数的数列an的前n项和为Sn,且2Snaan,数列bn满足b1,2bn1bn.(1) 求数列an,bn的通项公式;(2) 设数列cn满足cn,求和c1c2cn;(3) 是否存在正整数p,q,r(pqr),使得bp,bq,br成等差数列?若存在,求出所有满足要求的p,q,r;若不存在,请说明理由规范解答 (1) 2Snaan,2Sn1aan1,得2an1aaan1an,即(an1an)(an1an1)0.因为an是

12、正数数列,所以an1an10,即an1an1,所以an是等差数列,其中公差为1.在2Snaan中,令n1,得a11,所以ann.(2分)由2bn1bn得,所以数列是等比数列,其中首项为,公比为,所以,即bn.(5分)(注:也可累乘求bn的通项)(2) 由(1)得cn,所以cn,(7分)所以c1c2cn.(9分)(3) 假设存在正整数p,q,r(pqr),使得bp,bq,br成等差数列,则bpbr2bq,即.因为bn1bn,所以数列bn从第二项起单调递减当p1时,.若q2,则,此时无解;若q3,则,且bn从第二项起递减,故r4,所以p1,q3,r4符合要求;(11分)若q4,则2,即b12bq,又因为b1br2bq,所以b12bq,矛盾此时无解(12分)当p2时,一定有qp1.若qp2,则2,即bp2bq,这与bpbr2bq矛盾,所以qp1.此时,则r2rp.令rpm1,则r2m1,所以p2m1m1,q2m1m,mN*.综上得,存在p1,q3,r4或p2m1m1,q2m1m,r2m1(mN*)满足要求(16分)题型二、数列中的最值问题研究“和式”不等式恒成立问题,恒成立问题的基本方法有两类:第一类是先求和,再研究不等式,此种方法要求“和”要能求;第二类处理方法是直接研究单

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 幼儿/小学教育 > 小学教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号