柴油机孔式喷嘴内气液两相流场的数值模拟研究

上传人:E**** 文档编号:118261618 上传时间:2019-12-11 格式:PDF 页数:153 大小:7.56MB
返回 下载 相关 举报
柴油机孔式喷嘴内气液两相流场的数值模拟研究_第1页
第1页 / 共153页
柴油机孔式喷嘴内气液两相流场的数值模拟研究_第2页
第2页 / 共153页
柴油机孔式喷嘴内气液两相流场的数值模拟研究_第3页
第3页 / 共153页
柴油机孔式喷嘴内气液两相流场的数值模拟研究_第4页
第4页 / 共153页
柴油机孔式喷嘴内气液两相流场的数值模拟研究_第5页
第5页 / 共153页
点击查看更多>>
资源描述

《柴油机孔式喷嘴内气液两相流场的数值模拟研究》由会员分享,可在线阅读,更多相关《柴油机孔式喷嘴内气液两相流场的数值模拟研究(153页珍藏版)》请在金锄头文库上搜索。

1、华中科技大学 硕士学位论文 柴油机孔式喷嘴内气液两相流场的数值模拟研究 姓名:安娜 申请学位级别:硕士 专业:动力机械及工程 指导教师:张煜盛 20090526 华 中 科 技 大 学 硕 士 学 位 论 文 华 中 科 技 大 学 硕 士 学 位 论 文 摘 要摘 要 柴油发动机已在世界各地被广泛用作移动装置的动力源,同时,它也是大气环 境、特别是城市大气环境的主要污染源。随着各国排放法规日趋严格和石油供求矛 盾日趋尖锐,人们发现,柴油机喷嘴在高压和脉动喷射下的喷射特性,对柴油机喷 雾的形成,及至喷雾燃烧和排放特性均具有十分显著的影响。 柴油机的喷雾特性主要受喷油压力、小尺度喷孔内部结构和湍

2、流气液两相流态 的影响。由于细小喷孔内部的结构和流动极为复杂,加上喷油压力和燃油流速很 高,因此,关于孔式喷嘴内部流动特性分析的台架试验难度极大,迄今为止国内外 对此研究甚少。在此情况下,开展高压燃油喷嘴喷孔内气液两相湍流场三维数值模 拟研究就显得十分必要。本文的主要工作内容和取得的研究成果主要有: 1)以柴油机孔式喷嘴内部伴有空穴现象的复杂流动为研究对象,构筑了描述 柴油机喷嘴内部流动的数学模型,采用分块耦合方法和局部加密处理生成了三维结 构化网格,建立了基于 Fluent 软件包、旨在分析柴油机小尺度喷孔内气液两相流 态的计算平台。 2)在对计算方法和计算网格的适用性进行验证的基础上,应用

3、 CFD 分析软 件,通过对喷孔内单相和多相流质量守恒、动量守恒和能量守恒方程的求解,预测 分析了不同发动机工况下的孔式喷嘴内部流场特性,喷嘴几何参数对流场速度分 布、压力分布和出口速度的影响,以及稳定喷射时嘴内的空穴流动现象。 3)借助于对孔式喷嘴内部空穴现象和两相湍流流动的多维数值模拟,分析了 喷孔内空穴形成的机理及其分布情况,以及各流动参数与空穴形成之间的关系。在 此基础上,进一步探讨了燃油喷射压力、背压、发动机气缸温度和喷孔长径比等几 何结构参数对喷嘴内的流动形态与空穴分布的影响。 4)研究表明,孔式喷嘴内存在的“气泡”(空穴)现象与喷嘴结构设计参数 和流动参数密切相关,同样地,空穴考

4、虑与否及其准确的描述反过来又又会显著影 响整个喷嘴内复杂流态的预测值大小。将本文计算得到的喷孔内流场分布及空穴分 布的结果与国外相关试验结果对比表明,二者基本吻合。这也进一步说明,借助于 对喷孔内部空穴现象和湍流流动的多维数值模拟,可以帮助人们进一步理解喷孔内 部的复杂流动现象及其变化规律,为优化孔式喷嘴结构、强化燃油雾化和混合过程 提供有效的研究手段及基础数据资料。 关键词: 关键词:柴油机喷嘴;空穴;喷嘴内部流动;CFD 建模;自适应网格加密;斜交网 格及质量 华 中 科 技 大 学 硕 士 学 位 论 文 华 中 科 技 大 学 硕 士 学 位 论 文 Abstract Diesel e

5、ngines have been extensively used for light and heavy-duty road transportation in many regions during the last decades. However, their popularity makes them the main cause of on-road pollution, forcing the governments to create stringent regulations against engines tail-pipe noxious emissions. In di

6、esel engines the fuel injection system produces the spray, which directly affects the combustion of the fuel, which in turn determines the production of pollutants. In spite of this, the details of this causal relationship remain unclear. The objective of the present work is to analyze analytically

7、the flow pattern inside the nozzle of a diesel engine working with hydrocarbon fuel and predicting the relationship between the various flow parameters and occurrence of cavitation in such nozzles. Basic physical parameters affecting this phenomenon are identified and quantified while the effect of

8、nozzle geometry, fuel injection pressure and engine cylinder temperature upon the flow pattern and occurrence of cavitation in such nozzles are assessed. In this study, a Commercial Computational Fluid Dynamics (CFD) package is used while a computational grid is generated for the real geometry of di

9、esel injector nozzle. The suitability of the generated computational grid to give reliable results is examined. The results indicated that, cavitation modeling has reached a stage of maturity and it can usefully identify many of the cavitation structures present in internal nozzle flows and their de

10、pendence on nozzle design and flow conditions. However, because of the nearly incompressible main liquid flow inside the injector nozzle, quantitative accurate simulations cannot be restricted to the nozzle internal flow itself, but require simultaneous treatment of the cavitating flow inside the no

11、zzle. Otherwise, simulations with restriction on the internal flow problem only without regarding the two phase transformation inside the nozzle are qualitatively and quantitatively incorrect. Keywords: Diesel Engines Nozzle; Cavitation; Nozzle Internal Flow; CFD Modeling; Adaptive Mesh Refinement;

12、Mesh Skewness and Quality. 华 中 科 技 大 学 硕 士 学 位 论 文 华 中 科 技 大 学 硕 士 学 位 论 文 List of Symbols and Abbreviations Abbreviation Nomenclature of: CFD Computational Fluid Dynamics. PIV Particle image velocimetry. SMD Sauter Mean Diameter. L/D Nozzle length to diameter ratio. RMS Root-mean squared. HEM Homog

13、enous Equilibrium Model. VOF Volume of Fluid. BEM Boundary Element Method. VCO Voltage-controlled oscillator. RNG Renormalization group theory of turbulence. LES Large Eddy Simulation. DPM Discrete Phase Model. English Symbol Description of : Units Vm Mean nozzle velocity. m/s Vc Corrected nozzle ve

14、locity. m/s Vi Injection velocity. m/s Lb Breakup length. mm Cd Coefficient of discharge. none Cc Coefficient of contraction none Ac The area of the liquid flow at the narrowest part of the nozzle contraction c. m2 A The nominal nozzle area. m2 m. Mass flow through the nozzle. Kg/s Pv Liquid vapor p

15、ressure. Pa V Nominal fluid velocity. m/s K Cavitation number. none P The pressure at a distance of infinity. Pa O R Bubble initial radius. mm R The bubble radius. mm t Time. s T Temperature. K fg h Enthalpy of vaporization. kJ/kg a J Jakob number. none T Degree of superheating. K F The fluid functi

16、on. none 华 中 科 技 大 学 硕 士 学 位 论 文 华 中 科 技 大 学 硕 士 学 位 论 文 Pb The pressure at the bubble external wall. Pa Veff Effective flow velocity at the nozzle exit. m/s The stress tensor. Pa Pr Prandtl number. none Prt Turbulent Prandtl number for energy. none g Gravitational constant. m3/kg.s2 Re Reynolds number. none M Mach number none a Speed of sound m/s E Total energy in the syst

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号