汽车设计课件4.

上传人:我** 文档编号:117854127 上传时间:2019-12-11 格式:PPT 页数:17 大小:587KB
返回 下载 相关 举报
汽车设计课件4._第1页
第1页 / 共17页
汽车设计课件4._第2页
第2页 / 共17页
汽车设计课件4._第3页
第3页 / 共17页
汽车设计课件4._第4页
第4页 / 共17页
汽车设计课件4._第5页
第5页 / 共17页
点击查看更多>>
资源描述

《汽车设计课件4.》由会员分享,可在线阅读,更多相关《汽车设计课件4.(17页珍藏版)》请在金锄头文库上搜索。

1、第四章 万向传动轴设计 第四章 万向传动轴设计 第一节 概述 第二节 万向节结构方案分析 第三节 万向传动的运动和受力分析 第四节 传动轴结构分析与设计 第一节 概述 万向传动轴一般是由万向节、传动轴和中间支承组成。主 要用于在工作过程中相对位置不断改变的两根轴间传递转矩和旋转运 动。 万向传动轴设计应满足如下基本要求: 保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传 递动力。 保证所连接两轴尽可能等速运转。 由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内 。 传动效率高,使用寿命长,结构简单,制造方便,维修容易等。 变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字 轴万

2、向传动轴。在转向驱动桥中,多采用等速万向传动轴。当后驱动 桥为独立的弹性,采用万向传动轴。 第二节 万向节结构方案分析 万向节分为刚性万向节和挠性万向节。 刚性万向节可分为不等速万向节(如十字轴式)、准等速万向节(如 双联式、凸块式、三销轴式等)和等速万向节(如球叉式、球笼式等)。 不等速万向节是指万向节连接的两轴夹角大于零时,输出轴和输入 轴之间以变化的瞬时角速度比传递运动的万向节。 准等速万向节是指在设计角度下工作时以等于1的瞬时角速度比传 递运动,而在其它角度下工作时瞬时角速度比近似等于1的万向节。 输出轴和输入轴以等于1的瞬时角速度比传递运动的万向节,称之 为等速万向节。 挠性万向节是

3、靠弹性零件传递动力的,具有缓冲减振作用。 万向节动画演示 一、十字轴万向节 典型的十字轴万向节主要由主动叉、从动叉、十字轴、滚针轴 承及其轴向定位件和橡胶密封件等组成。 十字轴万向节结构简单,强度高,耐久性好,传动效率高,生 产成本低。但所连接的两轴夹角不宜过大,当夹角由4增至16时,十字 轴万向节滚针轴承寿命约下降至原来的1/4。 二、准等速万向节 双联式万向节是由两个十字轴万向节组合而成。为了保证两万 向节连接的轴工作转速趋于相等,可设有分度机构。偏心十字轴双联式 万向节取消了分度机构,也可确保输出轴与输入轴接近等速。 双联式万向节的主要优点是允许两轴间的夹角较大(一般可达 50,偏心十字

4、轴双联式万向节可达60),轴承密封性好,效率高,工作可 靠,制造方便。缺点是结构较复杂,外形尺寸较大,零件数目较多。 三、等速万向节 1球叉式万向节 球叉式万向节按其钢球滚道形状 不同可分为圆弧槽和直槽两种形式。 圆弧槽滚道型的球叉式万向节( 图4-1a)由两个万向节叉、四个传力 钢球和一个定心钢球组成。两球叉上 的圆弧槽中心线是以O1和O2为圆心 而半径相等的圆,O1和O2到万向节 中心O的距离相等。 当万向节两轴绕定心钢球中心O 转动任何角度时,传力钢球中心始终 在滚道中心两圆的交点上,从而保证 输出轴与输入轴等速转动。 球叉式 万向节结构较简单,可以在夹角不大 于3233的条件下正常工作

5、。 图4-1 球叉式万向节 a)圆弧槽滚道型 b)直槽滚道型 直槽滚道型球叉式万向节(图 4-1b),两个球叉上的直槽与轴的 中心线倾斜相同的角度,彼此对称 。在两球叉间的槽中装有四个钢球 。由于两球叉中的槽所处的位置是 对称的,这便保证了四个钢球的中 心处于两轴夹角的平分面上。这种 万向节加工比较容易,允许的轴间 夹角不超过20,在两叉间允许有 一定量的轴间滑动。 2球笼式万向节 球笼式万向节是目前应用最 为广泛的等速万向节。Rzeppa 型球笼式万向节(图4-2)是带 分度杆的,六个传力钢球2由球 笼4保持在同一平面内。当万向 节两轴之间的夹角变化时,靠比 例合适的分度杆6拨动导向盘5,

6、并带动球笼4使六个钢球2处于轴 间夹角的平分面上。 经验表明,当轴间夹角较小时,分度杆是必要的;当轴间 夹角大于11时,仅靠球形壳和星形套上的子午滚道的交叉也可将 钢球定在正确位置。这种等速万向节可在两轴之间的夹角达到35 37的情况下工作。 图4-2 Rzeppaz型球笼式万向节 1球形壳 2钢球 3星形套 4球笼 5导向盘 6分度杆 Birfield型球笼式万向节 Birfield型球笼式万向节(图4-3) 取消了分度杆,球形壳和星形套的滚道做 得不同心,使其圆心对称地偏离万向节中 心。这样,即使轴间夹角为0,靠内、外 子午滚道的交叉也能将钢球定在正确位置。 当轴间夹角为0时,内、外滚道的

7、横断面 为椭圆形,接触点和球心的连线与过球心 的径向线成45角,椭圆在接触点处的曲率半径选为钢球半径的 1.031.05倍。当受载时,钢球与滚道的接触点实际上为椭圆形接触区 。这种万向节允许的工作角可达42。由于传递转矩时六个钢球均同时 参加工作,其承载能力和耐冲击能力强,效率高,结构紧凑,安装方便 ,应用较为广泛。但是滚道的制造精度高,成本较高。 图4-3 Birfield型球笼式万向节 伸缩型球笼式万向节 伸缩型球笼式万向节(图4-4)结构与一般 球笼式相近,仅仅外滚道为直槽。在传递转矩 时,星形套与筒形壳可以沿轴向相对移动,故 可省去其它万向传动装置的滑动花键。这不仅 结构简单,而且由于

8、轴向相对移动是通过钢球 沿内、外滚道滚动实现的,所以与滑动花键相 比,其滚动阻力小,传动效率高。这种万向节 允许的工作最大夹角为20。 图4-4伸缩型球笼式万向节 Rzeppa型球笼式万向节主要应用于转向驱动桥中,目前应用较少。 Birfield型球笼式万向节和伸缩型球笼式万向节被广泛地应用在具有独立 悬架的转向驱动桥中,在靠近转向轮一侧采用Birfield型万向节,靠近差 速器一侧则采用伸缩型球笼式万向节。伸缩型万向节还被广泛地应用到 断开式驱动桥中。 第三节 万向传动的运动和受力分析 一、单十字轴万向节传动 当十字轴万向节的主动轴与从动轴存在一定夹角时, 主动轴的角速 度 与从动轴的角速度

9、 之间存在如下的关系 (4- 1) 由于cos 是周期为2 的周期函数,所以 也为同周期的周期函 数。当 为0、 时, 达最大值 且为 ;当 为 /2、3 /2时 , 有最小值 且为 。因此,当主动轴以等角速度转动时,从动轴时 快时慢,此即为普通十字轴万向节传动的不等速性。 十字轴万向节传动的不等速性可用转速不均匀系数k来表示 (4-2) 如不计万向节的摩擦损失,主动轴转 矩T1和从动轴转 矩T2与各自相应 的角速度有关系式,这样有 (4-3) 显然,当最小时,从动轴上的转矩为最大;当 最大时,从动轴上的转矩为最小。T1与一定时,T2在其最大 值与最小值之间每一转变化两次。 附加弯曲力偶矩的分

10、析 具有夹角 的十字轴万向节,仅在主 动轴驱动转矩和从动轴反转矩的作用下是 不能平衡的。从万向节叉与十字轴之间的 约束关系分析可知,主动叉对十字轴的作 用力偶矩,除主动轴驱动转矩T1之外,还 有作用在主动叉平面的弯曲力偶矩 。同 理,从动叉对十字轴也作用有从动轴反转 矩T2和作用在从动叉平面的弯曲力偶矩 。 在这四个力矩作用下,使十字轴万向节得 以平衡。 图4-5 十字轴万向节的力偶矩 a) =0, = b) =/2, =3 /2 当主动 叉 处于0和 时位置时(图 4 必 存在,且矢量 垂直于矢量T2; 处于 /2和3/2位置时 -5a),由于T1作用在十字轴平面, 为零;而T2的作用平面与

11、十字轴不共平面, 必有 合矢量 +T2指向十字轴平面的法线方向, 与T1大小相等、方向相反。这样,从动叉 上的附加弯矩 =T1sin。 当主动叉 (图4-5b),同理可知 =0,主 动叉上的附加弯矩 =T1tan。 分析可知,附加弯矩的大小是 在零与上述两最大值之间变化,其 变化周期为 ,即每一转变化两次 。附加弯矩可引起与万向节相连零 部件的弯曲振动,可在万向节主、 从动轴支承上引起周期性变化的径 向载荷,从而激起支承处的振动。 因此,为了控制附加弯矩,应避免 两轴之间的夹角过大。 二、双十字轴万向节传动 当输入轴与输出轴之间存在夹角 时,单个十字轴万向节的输出轴相对 于输入轴是不等速旋转的

12、。为使处于 同一平面的输出轴与输入轴等速旋转 ,可采用双万向节传动,但必须保证 同传动轴相连的两万向节叉应布置在 同一平面内,且使两万向节夹角1与 2相等(图4-6)。 当输入轴与输出轴平行时(图4- 6a),直接连接传动轴的两万向节叉 所受的附加弯矩,使传动轴发生如图 4-6b中双点划线所示的弹性弯曲,从 而引起传动轴的弯曲振动。 当输入轴与输出轴相交时( 图4-6c),传动轴两端万向节叉 上所受的附加弯矩方向相同,不 能彼此平衡,传动轴发生如图4- 6d中双点划线所示的弹性弯曲。 图4-6 附加弯矩对传动轴的作用 第四节 传动轴结构分析与设计 传动轴总成主要由传动轴及其两端焊接的花键和万向

13、节叉组成。传 动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的 变化。 传动轴在工作时,其长度和夹角是在一定范围变化的。设计时应保 证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长 度处在最小时不顶死。传动轴夹角的大小直接影响到万向节的寿命、万 向传动的效率和十字轴旋转的不均匀性。 在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度 和足够高的临界转速。所谓临界转速,就是当传动轴的工作转速接近于 其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传 动轴折断时的转速。传动轴的临界转速nk (r/min)为 式中,Lc为传动轴长度(mm),即两万向节

14、中心之间的距离;dc和Dc分别为传动轴轴管的 内、外径(mm)。 (4-4) 在设计传动轴时,取安全系数K=nk/nmax=1.22.0,K=1.2用于 精确动平衡、高精度的伸缩花键及万向节间隙比较小时,nmax为传动轴 的最高转速(r/min)。 当传动轴长度超过1.5m时,为了提高nk以及总布置上的考虑,常 将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上 加设中间支承。 传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的 扭转强度。轴管的扭转切应力应满足 (4-5) 式中,为许用扭转切应力,为300Mpa;其余符号同前。 传动轴动画演示传动轴动画演示 back next back

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号