液压与气压传动复习材料

上传人:liy****000 文档编号:117254778 上传时间:2019-12-05 格式:DOC 页数:14 大小:2.69MB
返回 下载 相关 举报
液压与气压传动复习材料_第1页
第1页 / 共14页
液压与气压传动复习材料_第2页
第2页 / 共14页
液压与气压传动复习材料_第3页
第3页 / 共14页
液压与气压传动复习材料_第4页
第4页 / 共14页
液压与气压传动复习材料_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《液压与气压传动复习材料》由会员分享,可在线阅读,更多相关《液压与气压传动复习材料(14页珍藏版)》请在金锄头文库上搜索。

1、液压与气压传动复习材料(17-18)第一章 液压传动基础知识第一节: 工作介质 一、液体的粘性(一)粘性的物理本质液体在外力作用下流动时,由于液体分子间的内聚力和液体分子与壁面间的附着力,导致液体分子间相对运动而产生的内摩擦力,这种特性称为粘性,或流动液体流层之间产生内部摩擦阻力的性质 。内摩擦力表达式: Ff = Adu/dy牛顿液体内摩擦定律: 液层间的内摩擦力与液层接触面积及液层之间的速度成正比。du/dy变化时,值不变的液体液压油均可看作牛顿液体。静止液体不呈现粘性1、动力粘度:=dy/du (Ns/m2) 物理意义:液体在单位速度梯度下流动时,接触液层间单位面积上内摩擦力 2、运动粘

2、度:动力粘度与液体密度之比值公式: = / (m2/s)单位:m2/s 。单位中只有长度和时间的量纲,类似运动学的量。 三、液体的可压缩性 1、液体的体积压缩系数(液体的压缩率)定义:体积为V的液体,当压力增大p时,体积减小V,则液体在单位压力变化下体积的相对变化量公式: = - 1/pV/V0 物理意义:单位压力所引起液体体积的变化 2、液体的体积弹性模数 定义:液体压缩系数的倒数公式: K = 1/= - p V /V 物理意义:表示单位体积相对变化量所需要的压力增量,也即液体抵抗压缩能力的大小。一般认为油液不可压缩(因压缩性很小),计算时取:K =(0.71.4) 103 MPa。若分析

3、动态特性或p变化很大的高压系统,则必须考虑1、 粘度和压力的关系 : p,Ff, 随p而,压力较小时忽略,50MPa以上影响趋于显著 2、 粘度和温度的关系 : 温度, Ff , 粘度随温度变化的关系叫粘温特性,粘度随温度的变化较小,即粘温特性较好,常用粘度指数VI来度量,VI 高,说明粘温特性好。 2、选择液压油粘度慢速、高压、高温:大(以q)快速、低压、低温:小(以 p)第二节 液体静力学 静止液体: 指液体内部质点之间没有相对运动,以至于液体整体完全可以象刚体一样做各种运动。液体的压力:液体单位面积上所受的法向力,物理学中称压强,液压传动中习惯称为压力静止液体特性:(1)垂直并指向于承压

4、表面(2)各向压力相等1、 液体静力学基本方程式 物理意义:静止液体内任何一点具有压力能和位能两种形式,且其总和保持不变,即能量守恒,但两种能量形式之间可以相互转换绝对压力:以绝对零压为基准所测测压两基准 ;相对压力:以大气压力为基准所测 关系:绝对压力 = 大气压力 + 相对压力 或 相对压力(表压)= 绝对压力 - 大气压力注 液压传动系统中所测压力均为相对压力即表压力;真空度 = 大气压力 - 绝对压力 1、帕斯卡原理(静压传递原理)在密闭容器内,液体表面的压力可等值传递到液体内部所有各点p = F / A。液压系统的工作压力取决于负载,并且随着负载的变化而变化。第三节 流体动力学 (一

5、)基本概念:1、理想液体:既无粘性又不可压缩的液体定常流动(稳定流动、恒定流动):流动液体中任一点的p、u和都不随时间而变化的流动一维流动:液体整个作线形流动2、流线-流场中的曲线;流管-由任一封闭曲线上的流线所组成的表面;流束-流管内的流线群 3、通流截面:流束中与流线正交的截面,垂直于液体流动方向的截面 A 流量:单位时间内流过某通流截面的液体的体积 q 平均流速:通流截面上各点流速均匀分布(假想) q = V / t = Al / t = Au液压缸的运动速度取决于进入液液压缸的流量,并且随着流量的变化而变化。 (二)连续性方程-质量守恒定律在流体力学中的应用1、连续性原理 :理想液体在

6、管道中恒定流动时,根据质量守恒定律,液体在管道内既不能增多,也不能减少,因此在单位时间内流入液体的质量应恒等于流出液体的质量。2、连续性方程 :11A1=22A2=q=常数结论:液体在管道中流动时,流过各个断面的流量是相等的,因而流速和过流断面成反比。(三)伯努利方程-能量守恒定律在流体力学中的应用1,能量守恒定律:理想液体在管道中稳定流动时,根据能量守恒定律,同一管道内任一截面上的总能量应该相等。2、理想液体伯努利方程 物理意义:在密闭管道内作恒定流动的理想液体具有三种形式的能量,即压力能、位能和动能。在流动过程中,三种能量可以互相转化,但各个过流断面上三种能量之和恒为定值。3、实际液体伯努

7、利方程 实际液体具有粘性 液体流动时会产生内摩擦力,从而损耗能量,故应考虑能量损失hw,并考虑动能修正系数,则: 应用伯努利方程时必须注意的问题:(1)断面1、2需顺流向选取(否则hw为负值),且应选在缓变的过流断面上。(2)断面中心在基准面以上时,z 取正值;反之取负值。通常选取特殊位置水平面作为基准面 4,动量定理:作用在物体上的外力等于物体单位时间内的动量变化量即 F =dI/dt=d(mv)/dt考虑动量修正问题,则有: F =q(2v2-1v1)X向动量方程 Fx = qv(22x-1v1x)X向稳态液动力Fx = -Fx = qv(1v1x-2v2x)结论: 作用在滑阀阀芯上的稳态

8、液动力总是力图使阀口关闭 第四节 液体流动时的压力损失 实际液体具有粘性 流动中必有阻力,为克服阻力,须消耗能量,造成能量损失(即压力损失) 分类:沿程压力损失、局部局部损失(一) 液体的流动状态层流:液体的流动是分层的,层与层之间互不干扰;湍流:液体的流动不分层,做混杂紊乱流动判断层流和图湍流:采用雷诺数 圆形管道雷诺数:Re = vd/过流断面水力直径:dH = 4A/x x-湿周;水力直径大,液流阻力小,通流能力大。Re Recr为湍流雷诺数物理意义:液流的惯性力对粘性力的无因次之比 (二) 沿程压力损失(粘性损失)定义:液体沿等径直管流动时,由于液体的粘性摩擦和质点的相互扰动作用而产生

9、的压力损失。产生原因 :外摩擦-液体与管壁间;内摩擦-因粘性,液体分子间摩擦1、层流时的沿程压力损失(p41,p42)1)通流截面上的流速分布规律(p41)结论:液体在圆管中作层流运动时,速度对称于圆管中心线并按抛物线规律分布。 2)通过管道的流量 3)管道内的平均流速4)沿程压力损失: p=p = 32l/d2结论: 液流沿圆管作层流运动时,其沿程压力损失与管长、流速、粘度成正比,而与管径的平方成反比。 理论值64 / Re;实际值75/Re2、湍流时的沿程压力损失对于光滑管,当3000Re 4 ; 短孔:0.5 4短孔、细长孔口流量计算短孔: , Cd = 0.82 ; 细长孔口:结论:

10、q p 反比于 流量受油温影响较大(T q)(六) 空穴现象和液压冲击 1空穴现象:液压系统中,由于某种原因(如速度突变),使压力降低而使气泡产生的现象2液压冲击(水锤、水击)液压冲击:液压系统中,由于某种原因(如速度急剧变化),引起压力突然急剧上升,形成很高压力峰值的现象。应搞清的概念:、压缩性、测压两基准(绝对相对)、压力表指示压力(实为表压力或相对压力)、理想液体、稳定流动、流量概念、动量方程之结论、层流、紊流概念、p沿 ,p局产生原因,小孔类型、缝隙类型。应记住的公式、概念和结论:粘度、粘温特性、静力学基本方程及静压两个特性、压力表达式(p=F/A)及结论、液压力公式(F=pA)曲面A

11、受力的计算、速度公式(v=q/A)及结论、连续性方程及结论、伯努利方程及物理意义、雷诺数表达式、薄壁小孔流量公式及特点。第二、三章 液压动力元件一、液压泵概念1、定义:将原动机输入的机械能转换为液体的压力能向系统供油。2、液压泵基本工作条件(必要条件):(1)形成密封容积;(2)密封容积变化;(3)吸压油口隔开 3、液压泵按结构形式分类: 齿轮式 、叶片式 、柱塞式二、液压泵性能参数1、排量和流量(1)排量V在没有泄露的情况下,泵每转一周所排出的液体体积(2)理论流量qt不考虑泄露的情况下,单位时间内 qt=Vn(V是排量n是转速)(3)实际流量q指泵工作时实际输出的流量 q = qt-q(q

12、是泄露流量)2、功率理论功率Pt=qpt输入功率即泵轴的驱动功率 PI = T=2nT(是角速度T是转矩)输出功率=pq结论:液压传动系统中,液体所具有的功率,即液压功率等于压力和流量的乘积。 3、容积效率液压泵实际流量与理论流量的比值v = q/qt机械效率理论转矩与实际输入转矩之比值总效率泵的输出功率与输入功率之比值结论:泵的总效率等于容积效率与机械效率之乘积。 4、效率(液压泵和液压马达)主要性能参数的计算液压泵液压马达理论流量qpt =vp*nqmt=vm*n实际流量qpqm理论输入功率Pip=p*qptPim=wTmt实际输入功率Pip=wTpPim=p*qm实际输出功率Pop=qppPom=wTm理论转矩TptTmt实际转矩TpTm理论转矩与实际转矩关系Tpt,Tm容积效率vp=qp/qptvm=qmt/qm机械效率mp=Tpt/Tpmm=Tm/Tmt总效率p=vp*mpm=vm*m三、齿轮泵齿轮泵分类: 按啮合形式可分为:外啮合、内啮合1、外啮合齿轮泵的突出问题及解决方法(见教材)2、泄漏主要来自:(1) 径向泄漏 (2) 齿侧泄漏 (3) 端面泄漏(占主要) 3、径向不平衡作用力(见教材) 径向力的结果:加速轴承磨损,降低轴承寿命,还可能使齿轮轴弯曲,导致齿顶与泵体摩擦加剧,使泵不能正常工作。4、改善措施:1)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 其它考试类文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号