市售主板之电容参数表购买超频主板主要依据

上传人:marr****208 文档编号:117009099 上传时间:2019-11-18 格式:DOC 页数:13 大小:181KB
返回 下载 相关 举报
市售主板之电容参数表购买超频主板主要依据_第1页
第1页 / 共13页
市售主板之电容参数表购买超频主板主要依据_第2页
第2页 / 共13页
市售主板之电容参数表购买超频主板主要依据_第3页
第3页 / 共13页
市售主板之电容参数表购买超频主板主要依据_第4页
第4页 / 共13页
市售主板之电容参数表购买超频主板主要依据_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《市售主板之电容参数表购买超频主板主要依据》由会员分享,可在线阅读,更多相关《市售主板之电容参数表购买超频主板主要依据(13页珍藏版)》请在金锄头文库上搜索。

1、市售主板之电容参数表,购买超频主板主要依据兄弟们购买主板很多都要超频使用,毕竟多数不是有钱人,这个可能和超频玩家的超频目的完全不同,这个帖子给大家介绍一些常见的主板电容的参数,供大家购买超频主板时作个参考,当然这个只是一个基本参考,没有好电容是没有好的超频能力的,有好电容也不见得超频就强。除耐压和容量这两个基本参数外,esr(等效串连电阻)和纹波电流大小是电容最重要的性能参数。下图是单项供电的情况,图左面是上桥导通,电感开始储存磁场能,自感电动势(12V-Vcpu,约10.5V)从右指向左,图右面是下桥导通,电感开始释放磁场能,自感电动势(Vcpu,约1.5V)由左指向右,由于自感电动势大小等

2、于电感与电流变化率的乘积,那么对电感充电1ms,那么需要7ms才能释放完毕,从能量的守恒角度也可以容易的算出来12V*(Imax/2)*1ms=1.5V*(Imax/2)*(1+x)ms,x=7下面是电感上的电流在主板上cpu的供电设计上,开关频率只有几百k,即使频率高达1Mhz,而现在cpu的频率都在Ghz以上,所以开关电源在调整以前,cpu已经工作了1000个周期以上,(电感对电容的充电是需要时间的,电容极板上电荷变化不能瞬间改变,就是说极板上电压不能瞬变),电荷由极板流向cpu时要经过电容上的等效串联电阻(主要是作为电容阴极的电解液或者导电高分子薄膜的电阻)和线路上的电阻,那么这段时间内

3、的电流波动产生的cpu电压波动基本上取决于电容的esr和线路上的电阻(DeltaV=DeltaI*R),比如电容极板电压为1.5V,esr和线路电阻共为2毫欧,那么突然增大的50安培电流(比如cpu由空闲转为进行数学计算)将在esr和线路电阻上产生100毫伏的压降,cpu获得的电压由1.5V变为1.40V,这个变化很可能造成cpu稳定性问题,尤其是超频时,线路上的电阻可以通过加锡条等办法来降低,而电容的esr,对电源的稳定性有关键的影响,是超频成功的重要因素。而纹波电流平方与esr成反比,即散热和温度一定的情况下,esr越低,温升就越低,耐纹波能力越高。这个CPU供电对阶越电流的响应要比下面讨

4、论的PWM的纹波更有意义,也更好理解,这里用具体的例子来讨论一下。假设cpu当前的供电电压是1.35V(电容极板上的电压),cpu由一个状态转为另一个状态电流突然增加50A(这个对于主流cpu来讲是符合实际情况的),那么这个增加的50A的电流就要在电容的esr(等效串联电阻)上产生压降,某品牌C61P采用4颗6.3V3300uF的液体电解(日本化工KZG),并联esr为12/4=3毫欧,那么esr上压降为0.15V,也就是说cpu的电压由1.35V下降至1.20V,某通路品牌NF520le和另一通路品牌C68S采用6颗富士通R5,并联esr为5/6=0.83毫欧,那么esr上压降为0.042V

5、,cpu的电压由1.35V下降至1.31V,这样的差距对于超频来说影响是很大的,即使是esr高的主板实际电压高出0.1V,对于超频来说散热和CPU的极限电压都是有限的,所以实际的超频结果就可能是能超和不能超或者超到X25000+还是6000+的问题,而且液体电解低温性能下降明显,负20度时esr增加为正25度时的两倍(东北这边冬天没暖气的时候超频的机器很容易起不来),高温时的寿命也明显不如固态电容(超频时电感和FET都很热,输入滤波的液体电解比较容易爆掉),因esr较大,供电系统本身的发热也高于固态电容(除电容esr的发热,默认电压要高于esr低的主板才能达到同样的稳定性,所以供电电流也要大,

6、FET和电感也要更热些),同样设计的主板,用红宝石MBZ的电容就明显热,用富士通R5的则基本上不热,所以固态电容做开关电源滤波效果好已经是公认的了(缺点是漏电流大,不宜做交流耦合,容量相对较小,某些不忽悠的厂家在全固态主板上也会保留液体电解做声卡耦合输出,是负责任的做法。PS:鄙视那些用10uF电容做声卡耦合输出的,32欧的负载500HZ以下的声音都被严重衰减,而且输出声音很小)。当然供电的相数也很主要,因为每相FET和电感上的电阻发热与电流平方成正比,在使用同样的FET、电容和电感的情况下,提供相同的功率输出每相供电的发热和相数平方成反比,总发热和相数成反比,两相供电做出三相的功率输出没什么

7、,更低的纹波也可以做到,不过并不是没有代价,电感体积要更大(这个现在不怎么流行,以前两相供电的P4主板经常见到巨型电感的),电感值要更小(以sunleiKQ10系列为例,0.56uH的R56M额定25A,直流电阻0.90毫欧,0.22uH的R22M额定35A,直流电阻0.48毫欧,不但发热低而且似乎成本也应该低一些,只是如果PWM频率相同那么每相的电流峰值也要加倍,每相FET发热就是4倍啦),PWM频率要更高(为了降低FET上的峰值电流并且获得大电感值供电的低纹波就只有提高PWM频率),每相的FET要有更低的RdsON阻值(相数低每相上电流平方值高,一般需要双FET做下桥),返修率也会提高(P

8、WM频率高,双FET并联工作返修率自然就高一些)。比如X24000+在3相供电的昂达N68S上超到2.8G跑双prime时电感的温升有60度左右(再高除非自己加FET散热片,否则超频就只有跑分的意义),而在5相供电并且有FET散热片的捷波悍马HA01-GT3上就只需要担心CPU体质。还有就是同德代工的HD2600Pro(只有3颗日本化工PSC固态电容那种),核心超到800M后稳定性没问题(很多人骂这卡干净,说电容太少,其实这卡电容还真的不错的,1颗PSC起码顶4颗红宝石MBZ来用,而且低温性能更好,高温寿命更长),但是核心供电的那个电感已经很烫手了(这个时候选购两相供电比选择固态电容更有意义)

9、,如果是两相供电的HD2600Pro(比如昂达和东翎的2600proddr3)就不用担心电感的温度问题,虽然电感、FET的温度上限都比较高,不过对于一般非极限OC的用户来说没人希望在那样热的情况下使用,而且还可能影响到电容等其它器件的寿命(即使是固态电容也最好在85度以下工作)。微星在部分845/865/945gc等主板上采用的供电就是相数少,大体积、小电感值电感和高的PWM频率的方案,缺点是电感体积会很大(两相时),成本没低多少(铜很贵啊,下桥FET起码用两个),发热和返修率的控制也没有多相的方案理想。用的相数少比相数多超得高是正常的(最近看到微星和DFI的高端P35就是4相设计,当然电感值

10、应该低于0.33uH以获得大电流,否则4核供电就不太够了),也不能说谁的设计好,因为真正的高科技是PWM的技术,这个intersil等PWM芯片提供商会做的,所以相数少没什么值得炫耀的地方(很简单的计算,通路和二线主板厂商不可能没算过,况且电感值低的电感应该更廉价)。映泰的I平台的三相供电在超频时电感温度不会低的(跑两个Prime就知道了),所以某些人不要以为这个是很先进的然后拿来吹映泰技术多好(最近看过有人拿这个来吹的)。固态电容最大的缺点是漏电流大,漏电流一般达到0.2CV(CV是容量和电压的乘积),如果这个值低于500uA,按照500uA来考虑(数据来自日本化工PSC数据文档),这个已经

11、是半个毫安了严重影响交流耦合输出的线性度甚至烧毁一些无输入耦合电容的功放系统,声卡输出电流一般才几十个毫安,所以固态电容厂商不建议把电容用于交流耦合,如果这块固态电容好的话那些高端声卡早这样做了,而普通液体电解尤其是音频专用的一般才0.01CV,低得多,输出线性度更好。所以很多厂商为了炒作全固态就做得很彻底(为了利益,似乎通路全固态的都能贵出不少,一线就更不用说,其实成本增加很少的),将声卡耦合输出也固态化,严重伤害了消费者的利益。下面是一些PWM纹波的相关公式,仅供理论学习,该讨论的基本上已经在上面讨论过,直接看后面的电容参数表即可。公式来自这篇maxim文章单项供电,由电容容量引起的噪声(

12、即纹波电压,这个是CPU超频的关键,尤其是AMD的cpu,内存控制器和cpu在一起,只要cpu供电好,即使是内存的线路设计、供电设计不好也不太影响cpu本身的超频)噪声值与电容容量成反比,与电感值成反比,与开关频率的平方成反比,也就是说由2200uF的液体电解换成560uF的固态电容后只要开关频率提高一倍就可以搞定容量减小所带来的纹波电压的增加,也就是说固态电容的主板虽然电容容量小,但是并不会有问题,而且和下面介绍的电容等效串联电阻(esr)所带来的噪声(纹波电压)相比要小得多。单项供电,由电容esr引起的噪声噪声值与电容的esr成正比,与频率成反比,与电感值成反比所以主板的cpu供电电容es

13、r越低,比如固态电解相对于液体电解,电感越大,比如1R0(1uH)相对于R56(0.56uH),就越容易实现更好的电气性能,当然这只是基本保障,能不能超频好要看其它因素.多项供电的情况资料来自AMD平台广泛使用的intersil的isl6566对应的纹波电流值,与电容ESR的乘积即为cpu供电的纹波电压值(这里的叙述有问题,多项的时候因为多项电流叠加,所以噪声计算并不是每相的纹波电流与电容esr的成绩,而是要小,小多少就要看叠加的方式了,这个以后有空再讨论吧,希望大家能提供些资料)在开关频率,电感值,输出esr等相同的情况下,12V输入,1.5V输出的供电系统,三项与两项和单项相比输出纹波电压

14、比为5:6:7,当然稍提高下PWM频率就可以弥补相数低的固有纹波稍高的问题。这里对喜欢改造主板的一些大虾的建议就是看起来提高pwm频率是一种很好的降低cpu供电纹波的很直接而且很廉价的方式,达到5相、6相甚至8相以上的供电纹波,下面给出intersil的isl6566的工作频率设定电阻与频率的关系rt值是rs引脚到地的电阻,rs脚是isl6566的第36脚,从小圆点顺时针数是第5脚200k的电阻对应的频率大概是150khz,90k的电阻大概是接近300khz,而1Mhz的工作频率,电阻大概为25k。当然提高工作频率对供电的fet要求较高,会显著提高fet的发热,应该做好散热措施。常见的电解液电解有:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号