高应力区锚杆支护实践及效果分析讲解

上传人:我** 文档编号:116133385 上传时间:2019-11-16 格式:DOC 页数:17 大小:92.50KB
返回 下载 相关 举报
高应力区锚杆支护实践及效果分析讲解_第1页
第1页 / 共17页
高应力区锚杆支护实践及效果分析讲解_第2页
第2页 / 共17页
高应力区锚杆支护实践及效果分析讲解_第3页
第3页 / 共17页
高应力区锚杆支护实践及效果分析讲解_第4页
第4页 / 共17页
高应力区锚杆支护实践及效果分析讲解_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《高应力区锚杆支护实践及效果分析讲解》由会员分享,可在线阅读,更多相关《高应力区锚杆支护实践及效果分析讲解(17页珍藏版)》请在金锄头文库上搜索。

1、高应力区锚杆支护实践及效果分析发布日期:2015-09-18来源:网络浏览次数:5核心提示:【摘要】窑街矿区高地应力带回采巷道变形量大,服务周期短,维修量大,分析高应力区锚杆支护过程中存在问题,从锚杆的材质选【摘要】窑街矿区高地应力带回采巷道变形量大,服务周期短,维修量大,分析高应力区锚杆支护过程中存在问题,从锚杆的材质选择、支护参数选定、工序操作上进行总结,提出提高锚杆支护效果的技术要素,为矿井正常的安全生产有着积极意义。锚杆支护是一种有效的巷道支护方式,具有支护成本低、操作方便、成巷速度快、作业环境和安全生产条件相对其它支护形式有所改善等优点,现成为煤矿巷道支护的主要形式。近年来,随着煤矿

2、开采深度不断增加、开采条件的恶化及地应力的不断增高,回采巷道出现变形量大、锚杆断裂、失效、巷道围岩离层、脱顶等现象,给矿井正常的安全生产带来极大影响。因此有必要对锚杆支护中存在问题,提出针对性地解决办法,以确保巷道的支护效果。1.影响锚杆支护效果的因素1.1支护参数不完全合理随着开采深度的不断增加,窑街多个矿区开采深度已达千米,地应力也显著增加,地压冲击也不断显现并增强,致巷道变形量大,维护成本大幅度提高,给安全生产带来极大隐患,以上问题说明,原来的支护参数已不适合支护要求,应根据矿井地应力和地质实际情况予以调整。1.2材质及规格达不到强度要求高地应力带巷道出现大面积离层脱顶现象,有时脱顶厚度

3、大于锚杆的长度,其主要是锚杆没起到时悬吊支护作用,锚索又撑受不了拉力的结果。另外,大面积脱顶处发现锚杆拔断现象,说明使用锚杆的材质存有问题,强度达不到要求。锚杆拔断的位置多在丝扣处,发现锚杆加工中存有问题,锚杆滚丝时,影响了锚杆的直径,锚杆受拉力时,丝扣处变为锚杆受力的弱面,导致锚杆断裂。1.3锚杆的预紧力和锚杆的让压变形不足在高地应力带巷道支护的锚杆,目前其扭距普遍在300N,m以下,在巷道支护初期围岩变形速度快,最大月移近量达400mm,锚杆预应力不能有效控制锚固区的围岩离层、裂隙等,大采深巷道的高应力和大变形量要求支护锚杆具有较高的预应力,以及足够的延伸率冲击韧性,而随着巷道变形量的增加

4、,锚杆杆体的延伸性能已达不到要求,锚杆断裂、失效等现象大幅增加。1.4锚固力不足锚杆钻孔、杆体、树脂锚固剂直径匹配关系不合理,树脂药卷安装达不到要求,则出现锚固剂搅拌不均匀,锚固剂环形多厚度不同,锚固剂与煤岩壁或锚杆的粘强度不足,锚杆的锚固长度,锚杆的围岩的结合程度偏离设计值等问题,造成锚固力不足,此时锚杆所受的力超过锚杆与锚固剂与煤岩壁的摩擦力,锚杆发生滑移,以致失效。1.5锚杆局部受力集中锚杆断裂的主要原因是杆体受力过大,超出其极限抗拉强度或抗剪强度。现场实践发现,断裂锚杆多发生在巷道顶、帮肩窝处及施工角度严重偏离设计的锚杆上,锚杆呈现出某一点受力集中现象,断口呈现出一点变形严重、断裂。2

5、.提高锚杆支护效果的对策2.1确定合理的支护参数随着地应力和条件的变化,要对锚杆的支护参数进行相应调整,要对高地应力区巷道受力及受力条件下顶帮底变形情况,以及巷道周边的围岩进行全面分析,找出其受力及变形规律,确定合理支护参数,包括锚杆的问排距、锚杆规格以及其它配合锚杆支护的锚索、钢带、金属网等综合支护材料,从整体上确保锚杆支护的有效性。2.2合理选用材质和规格锚杆支护是对锚杆施加一个预应力,由自由段将锚杆头处的拉力传至锚固体区域,通过锚固体的加固拱作用、悬吊作用、组合梁作用、围岩补强作用控制围岩不出现明显的离层、滑移与拉应力区。巷道采用锚杆支护时根据采深与巷道围岩性质、巷道周边围岩受力变形情况

6、,可选用不同预应力材质锚杆和规格。2.3选择合理的锚杆扭矩锚杆预应力随着扭矩的增大而增大,但受锚杆加工工艺精度,螺母与螺纹间的摩擦力、扭矩转化系数影响,当扭矩超过400N.m,预应力增加变缓。综合支护要求、材料成本及施工机具能力等因素,锚杆扭矩控制在300400N.m,较为经济合理。2.4增大变形让压功能锚杆的变形让压功能能够防止锚杆在过载阶段或冲击动压影响下破断。目前普遍采用提高锚杆的延伸率的方法,窑街海石湾煤矿采用让压锚杆(锚杆螺母与托盘之间使用球形让压管),取得了较好效果。让压管受到压力超过设定让压载荷时开始让压,通过让压管压缩变形达到让压的目的。2.5合理“三径”匹配锚杆钻孔、杆体、树

7、脂锚固剂直径的合理匹配,对煤巷锚杆支护参数的选择具有重要作用。根据工业性试验认为螺纹钢锚杆的钻孔直径和杆体直径之差应该控制在4-10mm,尤以6-8mm为佳,钻孔直径和杆体直径一定时,在确保顺利安装的前提下,树脂锚固剂直径应尽量加大。2.6锚杆均匀受力井下实践发现,锚杆在满足支护需求的情况下,多数锚杆断裂是由于施工角度偏差大导致锚杆受力集中,在集中拉力和剪切力作用下,某一点首先断裂,继而整个锚杆断裂,为防止应力集中的出现,可在技术和管理上予以控制。锚杆托盘采用碟形高凸调角设计,螺母与托盘接触面为球形,保证螺母与托盘面接触。管理上加强锚杆角度施工控制,保证施工的螺母与托盘保持垂直。2.7锚杆居中

8、放置锚杆轴线与钻孔轴线重合时,锚杆周围的树脂锚固剂对围岩均匀对称分布,可避免出现一侧应力集中及锚杆产生附加弯矩作用现象,锚杆支护系统比较稳定。如锚杆偏心距增大,锚杆周围树脂锚固剂和钻孔围岩受力不均,易导致应力集中,并对锚杆产生弯矩作用,锚杆支护系统稳定性差。2.8托盘与煤壁面接触提高锚杆支护的效果还要做好其它方面的工作,掘进支护前巷道顶帮必须要平整,保证锚杆托盘与煤壁面接触并受力均匀。与锚直同时使用的条形钢带既要有强度,还要保证其一定的可弯曲性,一般可用14mm钢筋梯子梁,否则,梯子梁在煤壁不平整的情况下将锚杆托盘支起而不能与煤壁面接触,导致锚杆失效,影响锚杆的支护效果。3.结论(1)高地应力

9、区巷道锚杆支护要选择合理的支护参数。(2)巷道支护锚杆需具有较高的预应力和延伸量。(3)锚杆钻孔、杆体、树脂锚固剂直径要符合“三径匹配”原则,锚杆扭矩宜控制在300400N.m.(4)施工质量对锚杆支护效果具有重要作用。要采取提高人员的操作技能、严格施工过程控制等措施,保证施工质量。锚杆支护技术中的问题探讨发布日期:2016-05-31来源:中国检测网浏览次数:5核心提示:锚固力与锚杆拉拔力锚固力指锚杆对围岩产生的约束力。可细分为锚杆工作时的锚固力和设计锚固力,锚杆工作时锚固力包锚固力与锚杆拉拔力锚固力指锚杆对围岩产生的约束力。可细分为锚杆工作时的锚固力和设计锚固力,锚杆工作时锚固力包括初锚力

10、和正常工作时的锚固力。通常说的锚固力指锚杆正常工作时的锚固力。拉拔力也称抗拉拔力或抗拔力,指阻止锚杆从岩体中拔出的力。拉拔力可分为设计拉拔力和检测拉拔力。通常说的拉拔力指设计拉拔力,其值应大于锚杆破断力。检测拉拔力用于锚杆施工质量检测,其值应不小于设计锚固力。锚固力与锚杆拉拔力区别锚固力是锚杆对围岩产生的约束力,是限制围岩变形,起支护作用的力。锚杆拉拔力是锚杆锚固后拉拔实验时,所能承受的极限载荷,反映的是杆体、锚固剂、岩石粘结到一起后,锚杆破断或失效的最大拉力。锚固力随着被支护围岩变形、围岩的膨胀而增大,因此锚固力是一个动态发展并不断变化的力。锚杆拉拔力是一个固定值,不随围岩变形和锚杆受力而改

11、变。如果围岩不发生变形且不考虑杆体的松驰效应,锚固力等于初锚力。锚固力检测使用安装于锚杆螺母和托盘之间的锚杆测力计,一般在锚杆安装时把锚杆测力计安好。检测锚固力是为了监测锚杆受力状况,需要进行长期观测。锚杆拉拔力检测使用锚杆拉力计,检测可以在锚杆安装完成后任何时候进行,检测锚杆拉拔力是为了查验锚杆杆体、锚固剂、岩石粘结效果。在施工中,检测锚杆拉拔力时,一般只要达到设计锚固力即可;在做破坏性检测时,则要求锚杆被拉断或锚杆被拉出才终止。检查锚杆施工质量时,一般检查锚杆拉拔力。监测分析锚杆工作情况时,测锚固力。测量锚固力是为了验证支护的可靠性,为以后修改支护设计提供依据。设计和施工时,必须保证锚杆拉

12、拔力大于杆体破断力这一基本原则,即锚杆杆体受力超过其破断力后,锚杆可能被拉断,但锚杆不能被拉出。常见错误是设计的锚杆拉拔力小于杆体破断力。施工、设计中锚固力与锚杆拉拔力经常混淆、混用。二者混淆原因一方面是由于一些标准、教课书说法不一,造成混乱;另一方面对二者内涵认识理解有误,辨识不清。预紧力和预紧力矩预紧力也称初锚力,在安装锚杆(锚索)时,通过拧紧螺母或采用张拉方法施加在锚杆(锚索)上的拉力,单位kN。预紧力矩是拧紧螺母使锚杆达到设计预紧力时,施加到螺母上的力矩,单位Nm。预紧力和预紧力矩关系二者有定性的关系,通常预紧力矩越大,预紧力越大,但非线性关系。预紧力是力,是施加在锚杆(锚索)上的拉力

13、,单位kN;预紧力矩是力矩,施加在压紧螺母上,单位Nm。二者测量仪器不同。预紧力可以通过安装在锚杆托盘与螺母间的锚杆测力计观测;预紧力矩可以通过数字显示或带有刻度显示的锚杆扭力扳手观测。锚杆施工设计要求的是预紧力,而不是预紧力矩。但在实际施工中,由于预紧力矩测读方便而预紧力测量相对复杂,且预紧力随着预紧力矩增大而增大,为了检测方便,通过直接检测预紧力矩而达到间接检测锚杆的预紧力的目的。因此,锚杆安装时通常检测预紧力矩,而不检测预紧力。增大锚杆预紧力方法可以从两方面入手,一是提供足够大的原动力,二是上紧螺母。预紧力的作用及要求预紧力能够发挥锚杆主动支护作用,特别是在层状岩层、破碎围岩条件下,增大

14、预紧力能够改变围岩性质,防止围岩破坏,保持围岩稳定,有利于对围岩支护。试验证明,如果顶板围岩有整体离层冒落的趋势时,只有预紧力大于潜在冒落围岩重量时,才能阻止围岩离层趋势的出现和继续发展,才能发挥锚杆主动支护作用。锚杆预紧力矩越大越好。由于受锚杆施工机具限制,手动锚杆安装机具预紧力在100200Nm,产生初锚力可达到1020kN;机载锚杆机具预紧力可达200300Nm,产生初锚力可达30 kN。例如,一根长度2.4m的锚杆,间排距为800800(mm)时,单根锚杆支护围岩重量约3.5t。由于受到锚杆安装工艺、施工机具的限制,35 kN的预紧力较难达到。所以定性说:锚杆预紧力矩越大越好,以获得较

15、大的预紧力。只有达到一定的预紧力后,锚杆才能发挥主动支护的作用,形成组合梁、组合板结构。随着新的施工机具出现,预紧力将会逐渐增大,合适的预紧力范围为:下限大于支护的围岩重量,上限为锚杆屈服强度的70。现场常见问题:一是预紧力偏低,甚至为零,发挥不了锚杆主动支护作用;二是预紧力大小相差悬殊,造成锚杆受力不均。使用机械快速安装工艺,可避免上述问题的发生。锚杆设计问题锚杆设计时,一般是采用悬吊理论来计算锚杆的直径,这种设计理念在矿压小、围岩运动方向与锚杆平行的条件下适用,但在高应力、围岩运动方向与锚杆方向不一致时则受到限制。例如,一些高应力巷道整修时发现,一些锚杆被挤压变形成为类似汽车摇把“ ”型,平行于锚杆的观测钻孔发生错位等

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号