重点高中数学必修二直线与圆的综合问题精选

上传人:tia****nde 文档编号:116006387 上传时间:2019-11-15 格式:DOC 页数:10 大小:251.50KB
返回 下载 相关 举报
重点高中数学必修二直线与圆的综合问题精选_第1页
第1页 / 共10页
重点高中数学必修二直线与圆的综合问题精选_第2页
第2页 / 共10页
重点高中数学必修二直线与圆的综合问题精选_第3页
第3页 / 共10页
重点高中数学必修二直线与圆的综合问题精选_第4页
第4页 / 共10页
重点高中数学必修二直线与圆的综合问题精选_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《重点高中数学必修二直线与圆的综合问题精选》由会员分享,可在线阅读,更多相关《重点高中数学必修二直线与圆的综合问题精选(10页珍藏版)》请在金锄头文库上搜索。

1、直线与圆一解答题(共10小题)1已知直线xy+3=0与圆心为(3,4)的圆C相交,截得的弦长为2(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k0)若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程2已知直线l:y=x+2被圆C:(x3)2+(y2)2=r2(r0)截得的弦AB的长等于该圆的半径(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x3)2+(y2)2=r2(r0)截得的弦与圆心构成三角形CDE若CDE的面积有最大值,求出直线m:y=x+n的方程;若CDE的面积没有最大值,说明理由3已知M(4,0),N(1,

2、0),曲线C上的任意一点P满足:?=6|()求点P的轨迹方程;()过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=1,=2,试问1+2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由4已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x2)2+y2=1相内切,记圆心P的轨迹为曲线C()求曲线C的方程;()设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求QMN面积的最大值5已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C()求曲线C的方程;()过点D(3,0)且斜率不为零的直线交曲线

3、C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由6如图所示,在ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系()求曲线的方程;()设动直线l交曲线于E、F两点,且以EF为直径的圆经过点O,求OEF面积的取值范围7已知ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上()求C点的轨迹的方程;(

4、)已知过P(0,2)的直线l交轨迹于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值8已知圆M:x2+y2+2y7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求ABC面积的最大值9已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2+(y3)2=1交于点M,N两点(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由10已知O为坐标

5、原点,抛物线C:y2=nx(n0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由直线与圆一解答题(共10小题)1已知直线xy+3=0与圆心为(3,4)的圆C相交,截得的弦长为2(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k0)若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程【分析】(1)求出圆心C到直线

6、l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k21)?x2+(k21)?y2+(64k2)x+(86k2)y+13k29=0,若动点M的轨迹方程是直线,则k21=0,即可得出结论【解答】解:(1)圆心C到直线l的距离为=,截得的弦长为2,半径为2,圆C:(x3)2+(y4)2=4;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k21)?x2+(k21)?y2+(64k2)x+(86k2)y+13k221=0,若动点M的轨迹方程是直线,则k21=0,k=1,直线的方程为x+y4=0【点评】本小题主要考查直

7、线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题2已知直线l:y=x+2被圆C:(x3)2+(y2)2=r2(r0)截得的弦AB的长等于该圆的半径(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x3)2+(y2)2=r2(r0)截得的弦与圆心构成三角形CDE若CDE的面积有最大值,求出直线m:y=x+n的方程;若CDE的面积没有最大值,说明理由【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;(2)根据直线和圆相交的位置关系,结合CDE的面积公式即可得到结论【解答】解:(1)设直线l与圆C交于A,B两点直线l:y=x+2被圆C:(x3)2+(y2)

8、2=r2(r0)截得的弦长等于该圆的半径,CAB为正三角形,三角形的高等于边长的,圆心C到直线l的距离等于边长的直线方程为xy+2=0,圆心的坐标为(3,2),圆心到直线的距离d=,r=,圆C的方程为:(x3)2+(y2)2=6(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE在CDE中,DE=,=,当且仅当h2=6h2,即h2=3,解得h=时,CDE的面积最大CH=,|n+1|=,n=,存在n的值,使得CDE的面积最大值为3,此时直线m的方程为y=x【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键3已知M(4,0),N(1,0),曲线C上的任意一

9、点P满足:?=6|()求点P的轨迹方程;()过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=1,=2,试问1+2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由【分析】()求出向量的坐标,利用条件化简,即可求点P的轨迹方程;()分类讨论,利用=1,=2,结合韦达定理,即可得出结论【解答】解:()设P(x,y),则=(3,0),=(x4,y),=(1x,y)?=6|,3(x4)+0y=6,化简得=1为所求点P的轨迹方程.4分()设A(x1,y1),B(x2,y2)当直线l与x轴不重合时,设直线l的方程为x=my+1(m0),则H(0,)从而=(x1,y1+),=(

10、1x1,y1),由=1得(x1,y1+)=1(1x1,y1),1=1+同理由得2=1+,(1+2)=2+由直线与椭圆方程联立,可得(4+3m2)y2+6my9=0,y1+y2=,y1y2=代入得(1+2)=2+=,1+2=当直线l与x轴重合时,A(2,0),B(2,0),H(0,0),1=2=2,1+2=11分综上,1+2为定值.12分【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题4已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x2)2+y2=1相内切,记圆心P的轨迹为曲线C()求曲线C的方程;()设Q为曲线C上

11、的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求QMN面积的最大值【分析】(I)由已知条件推导出|PF1|+|PF2|=8|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程(II)由MNOQ,知QMN的面积=OMN的面积,由此能求出QMN的面积的最大值【解答】解:()设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x2)2+y2=1相内切,所以动圆P与圆F1只能内切(1分)所以|PF1|+|PF2|=7R+R1=6|F1F2|=4(3分)所以圆心

12、圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,a=3,c=2,b2=a2c2=5所以曲线C的方程为=1(4分)()设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my25=0,则y1+y2=,y1y2=(5分)所以|MN|=(7分)因为MNOQ,QMN的面积=OMN的面积,O到直线MN:x=my+2的距离d=(9分)所以QMN的面积(10分)令=t,则m2=t21(t0),S=设,则因为t1,所以所以,在1,+)上单调递增所以当t=1时,f(t)取得最小值,其值为9(11分)所以QMN的面积的最大值为(12

13、分)【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等5已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C()求曲线C的方程;()过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由【分析】()由题意可知丨PM丨+丨PN丨=4丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2c2=1,即可求得椭圆方程;()将直线方程代入椭圆方程,考查韦达定理,直线

14、的斜率公式,当且仅当,解得t=2,代入即可求得,定点的坐标【解答】解:()设动圆P的半径为r,由N:及,知点M在圆N内,则有,从而丨PM丨+丨PN丨=4丨MN丨=2,P的轨迹C是以M,N为焦点,长轴长为4的椭圆,设曲线C的方程为:(ab0),则2a=4,a=4,c=,b2=a2c2=1故曲线C的轨迹方程为;()依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2),由,整理得:(4+m2)y2+6my+5=0,则=36m245(4+m2)0,即m24,解得:m2或m2,由y1+y2=,y1y2=,x1+x2=m(y1+y2)+6=,x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则(x1t)(x2t)=x1x2t(x1+x2)+t2=t+t2=,kAQ?kBQ=?=,要使kAQ?kBQ为非零常数,当且仅当,解得t=2,当t=2时,常数为=,当t=2时,常数为=,存在两个定点Q1(2,0)和Q2(2,0),使直线AQ,BQ的斜率之积为常数,当定

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 事务文书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号