华沙圈上连续映射的某些动力性质

上传人:f****u 文档编号:115819492 上传时间:2019-11-14 格式:PDF 页数:6 大小:443.46KB
返回 下载 相关 举报
华沙圈上连续映射的某些动力性质_第1页
第1页 / 共6页
华沙圈上连续映射的某些动力性质_第2页
第2页 / 共6页
华沙圈上连续映射的某些动力性质_第3页
第3页 / 共6页
华沙圈上连续映射的某些动力性质_第4页
第4页 / 共6页
华沙圈上连续映射的某些动力性质_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《华沙圈上连续映射的某些动力性质》由会员分享,可在线阅读,更多相关《华沙圈上连续映射的某些动力性质(6页珍藏版)》请在金锄头文库上搜索。

1、E39?E3m?aa?Vol.39, No. 3 1996d5?ACTA MATHEMATICA SINICAMay, 1996 ?HGIBOTJ?EM?ANY ?v? (?a?b?bB?p?510631) ?f?p?x (?s?b?b?bB?b230026) VQ:?wo?e?b?bg?k?e?o?b ?l?j?bSarkovskiiez?drb?Z?qnd rb?Z?c?drb?Z?b?i?a?4,?s?b? ?u?b?db?h?2bm? ?o?g?Sarkovskiiyt?i 1SP ?t(Warsaw circle) W?i?R2?mC?g?z? W0= (x,y) R2| x = 0

2、, 1 y 1, W1= (x,y) R2| x = 0, 3 y 0?fn(z) L1.y?z,f(z) 2(f) P(f),?dj? p?z,fn(z) W0xz,fn(z) L.r?V? z = 1(z) ? L?X? ? fn(? z) ? L.? ? y (?f).?Yy (?f). F?O? x = 1(x).? ? K? x?hg?L?K = (?K) M.?x?hg?L ?K1 M?K1W0= K.y?x 4(f),m?K1?u 3(f)x?m 0? fm(u) L1.y?u,fm(u) 3(f)P(f),?dj?p?u,fm(u) W0xu,fm(u) K. r?V? u =

3、 1(u) ? K?X? ? fm(? u) ? K.j?pS?S? u (?f).?X?J ? x 2(?f).?Yx (2(?f).yYy?2(?f) = P(?f),m?x (P(?f),?X?D? KUX? r?X?J4(f) P(f). ?u?vnAP(f) 4(f)?E?K? ? ?3 ?f : W W?tW?hgE?u?f?lF?qF ?K?P(f) = R(f). WCj?K?2?X? P(f) R(f) 4(f) = P(f). ?YP(f) = R(f). R?3?f : X X?hgE?u?n?X?hg?RI? h(f) =sup xR(f) h(f |(x,f). WC

4、?hg?E?S 15. R?4?f : I I?hgE?u?n?I?IR?hgE?tf?l F?lP?2?Z?V?Whgx I, (x,f)? WC?x P(f).?x P(f)?Ey(x,f)?hg?z?mC?x P(f)P(f). j?K?C,?f?MFe I? (f2n(x) x)(x e) 0x(f2n+1(x) e)(x e) 0?r?X? f(x,f) y I | y e) = (x,f) y I | y e. ?QE?u?f2,j?K?B, f2?lF?lgP?2?Z?m?dj?K?C? ?e1,e2 I?e1 0. ?oc? z R(?f)m? ? f |(? z,?f)= ?

5、 f |(? z,?f). ?mh(?f |(? z,?f) 0. Oz = (? z).?X?z R(f),m?( |(? z,?f) ) (?f |(? z,?f) = (f |(z,f) ( |(?z,?f). y?(? z,?f)?m |(? z,?f): (? z, ? f) (z,f)? hg?h?mh(f |(z,f) = h(?f |(? z,?f) 0. ?j?s?3, h(f) 0. ?J?K?cV?c?X?D?V?yy R(f),?y1 (R(?f)? ?(y,f) = (y1,f).?r?V?y R(f)?X?y,f(y), W0,?r? |0,1/8: 0,1/8 W

6、0?hg?h?my (R(?f);?n 0?fn(y) / W0,y? |(1/8,1): (1/8,1) W W0?hg?hmy1= fn(y) (R(?f),?q(y,f) = (y1,f). F?f?lF?lP?2?Z?o? ? f?lF?lgP?2?Z? ?p?sy R(f),?X?h(f |(y,f).j?pS?X?Ky (R(?f),?q O? y = 1(y) R(?f).j?s?4, (? y,?f)?hg?z?J = a,b 0,1)?(? y,?f)? ?0,1)?v(? y,?f)?O?E?Kqu? : 0,1) J?K?eV? c?oc?P( ? f) P(?f)x(?

7、 y,?f) = (? y, ? f),?mu? ? f : J J?l F?lP?2?Z?Yj?K?Dxs?3,?X?h(?f |(? y,?f) = 0. ?v?K? eV?c?S?h(f |(y,f) = 0.?j?s?3,?h(f) = 0. ?KL 3mX?B?u?F?v?RNBW?299 1 Nadler S B Jr. Continuum Theory. New York: Marcel Dekker, Inc, 1992. 2 Block L, Coppel W A. Dynamics in one dimension.Lecture Notes in Mathematics

8、No.1513, Berlin: Springer, 1992. 3Y?JTG?w?a?b?1984, 29: 518520. 4 Minc P, Transue W R R. Sarkovskii theorem for hereditarily decomposable chainable continua. Trans Amer Math Soc, 1989, 315: 173188. 5Y?JTw?OC?B?a?k?n?R?b?1988, 17: 110. 6?Y?w?J?i?OCB?Q?1992. 7 Adler R L, Koheim A G, McAndrew M H. Topo

9、logical entropy. Trans Amer Math Soc, 1965, 4: 309319. 8 Sarkovskii A N. Non-wandering Points and the Centre of a Continuous Mapping of the Line into Itself. Dopovidi Akad Nauk Ukrain RSR, 1964. 865868. 9Y?W?G?w?f, (f | (f) = P(f).?b?1982, 27: 513514. 10 Sarkovskii A N. Coexistence of cycles of a co

10、ntinuous mapping of the line into itself. Ukrain Mat Z, 1964, 16: 6171. 11 Xiong J. Sets of recurrent points of continuous maps of the interval.Proc Amer Math Soc, 1985, 95: 491494. 12 Misiurewicz M. Horseshoes for mappings of the interval.Bull Acad Polon Sci Ser Sci Math, 1979, 27: 167169. 13?N?P?i

11、h?s?b(A?), 1985, 10: 883889. 14Y?MisuirewiczihL?f?s?b?bb?1989, 19: 2124. 15 Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982. Some Dynamical Properties of Continuous Maps on the Warsaw Circle Xiong Jincheng (Department of Mathematics, South China Normal University, Guang

12、zhou 510631, China) Ye XiangdongZhang ZhiqiangHuang Jun (Department of Mathematics, University of Science and Technology of China, Hefei 230026, China) Abstract: In the present paper we study the dynamical properties of continuous maps on the Warsaw circle and show that for such a map a theorem simi

13、lar to the Sarkovskii Theorem for interval maps holds, the closure of the set of periodic points coincides with the closure of the set of recurrent points, the depth of the center is not greater than 4, and the topological entropy is zero if and only if the periods of periodic points are the powers of 2. Keywords: Warsaw circle, dynamical property, Sarkovskii space, center, depth of the center

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号