内容(十三)锂离子电池的电化学阻抗谱分析.

上传人:我** 文档编号:115334792 上传时间:2019-11-13 格式:DOC 页数:16 大小:416.50KB
返回 下载 相关 举报
内容(十三)锂离子电池的电化学阻抗谱分析._第1页
第1页 / 共16页
内容(十三)锂离子电池的电化学阻抗谱分析._第2页
第2页 / 共16页
内容(十三)锂离子电池的电化学阻抗谱分析._第3页
第3页 / 共16页
内容(十三)锂离子电池的电化学阻抗谱分析._第4页
第4页 / 共16页
内容(十三)锂离子电池的电化学阻抗谱分析._第5页
第5页 / 共16页
点击查看更多>>
资源描述

《内容(十三)锂离子电池的电化学阻抗谱分析.》由会员分享,可在线阅读,更多相关《内容(十三)锂离子电池的电化学阻抗谱分析.(16页珍藏版)》请在金锄头文库上搜索。

1、锂离子电池的电化学阻抗谱分析1. 锂离子电池的特点锂离子电池充电时,正极中的锂离子从基体脱出,嵌入负极;而放电时,锂离子会从负极中脱出,嵌入正极。因此锂离子电池正负极材料的充放电容量、循环稳定性能和充放电倍率等重要特性均与锂离子在嵌合物电极材料中的脱出和嵌入过程密切相关。这些过程可以很好地从电化学阻抗谱(EIS)的测量与解析中体现出来。2. 电化学阻抗谱的解析2.1. 高频谱解析嵌合物电极的EIS谱的高频区域是与锂离子通过活性材料颗粒表面SEI膜的扩散迁移相关的半圆(高频区域半圆),可用一个并联电路RSEI/CSEI表示。RSEI和CSEI是表征锂离子活性材料颗粒表面SEI膜扩散迁移过程的基本

2、参数,如何理解RSEI和CSEI与SEI膜的厚度、时间、温度的关系,是应用EIS研究锂离子通过活性材料颗粒表面SEI膜扩散过程的基础。2.1.1. 高频谱解析RSEI和CSEI与SEI膜厚度的关系SEI膜的电阻RSEI和电容CSEI与SEI膜的电导率、介电常数e的关系可用简单的金属导线的电阻公式和平行板电容器的电容公式表达出来(1)(2)以上两式中S为电极的表面积,l为SEI膜的厚度。倘若锂离子在嵌合物电极的嵌入和脱出过程中r、e和S变化较小,那么RSEI的增大和CSEI的减小就意味着SEI厚度的增加。由此根据RSEI和CSEI的变化,可以预测SEI膜的形成和增长情况(这是理解高频容抗弧的关键

3、)。2.1.2. SEI膜的生长规律(RSEI与时间的关系)嵌合物电极的SEI膜的生长规律源于对金属锂表面SEI膜的生长规律的分析而获得。对金属锂电极而言,SEI膜的生长过程可分为两种极端情况:(A)锂电极表面的SEI膜不是完全均匀的,即锂电极表面存在着锂离子溶解的阳极区域和电子穿过SEI膜导致的溶剂还原的阴极区域;(B)锂电极表面的SEI膜是完全均匀的,其表面不存在阴极区域,电子通过SEI膜扩散至电解液一侧为速控步骤。这对于低电位极化下的炭负极和过渡金属氧化物负极以及过渡金属磷酸盐正极同样具有参考价值。下面分别讨论这两种情况。(A)锂电极的SEI膜不完全均匀电极过程的推动力源自金属锂与电解液

4、组分之间的电位差DVM-S。假设:(1)腐蚀电流服从欧姆定律;(2)SEI膜的电子导电率(re)随时间变化保持不变,此时腐蚀电流密度可表示为:(3)式中导电率re的量纲为W m,SEI膜的厚度l的量纲为m。通过比较(3)式两端的量纲,可以判断公式成立。进一步假设腐蚀反应的全部产物都沉积到锂电极上,形成一个较为均匀的薄膜,那么(4)K为常数,其量纲为m3A-1s-1。从(3)、(4)两式可得:(5)对(5)式积分得到(6-1)(5)式中A1是积分常数。如果在(0, t)的区间进行定积分,且令t=0时,l=l0,则(6-2)或(6-3)(B)锂电极的SEI膜完全均匀此时,电子通过SEI膜扩散到电解

5、液一侧为速控步骤,腐蚀电流密度遵循如下的(7)式(7)公式(7)来自极限扩散电流密度的表达式(电子转移数为n=1),式中D为电子在SEI膜中的扩散系数,C0为靠近金属锂一侧SEI膜中的电子的浓度。将公式(7)和(4)联立得到(8)积分后变为(9)公式(6-3)和(9)为SEI膜生长的抛物线定理。SEI膜生长的抛物线定理仅是一种理想结果。在实际的电池体系中,由于re和D均可能随l的变化而变化,SEI膜可能会破裂或者不均匀生长,因此SEI的增长常常会偏离抛物线生长定理。2.1.3. RSEI与电极极化电位的关系锂离子通过SEI膜迁移的动力学过程可用表征离子在固体中迁移过程的公式来描述(10)式中a

6、为离子跳跃半距离(the jumps half distance),n为晶格振动频率,z为离子电荷(对锂离子来说等于1),W为离子跳跃能垒,c是离子的浓度,E是电场强度,F是Faraday常数。当所有的电位降都发生在SEI膜上时,(11)式中h为过电位,l为SEI的厚度。在低电场强度下,将公式(11)的变形代入(10)式,再利用双曲正旋函数的近似公式对(10)式进行简化处理,得到(12)这样,SEI膜的电阻RSEI可以表示为(13)(13)式也可变换成对数的形式:(14)利用lnRSEI对T-1作图,可以从直线的斜率直接求得W的值。2.2. 中高频谱解析实用化嵌合物电极EIS谱的中高频区域是与

7、电子在活性材料颗粒内部的输运过程相关的半圆,可用一个Re/Ce并联电路表示。Re是活性材料的电子电阻,是表征电子在活性材料颗粒内部的输运过程的基本参数。根据欧姆定律,电阻R与电导率s有如下的关系(15)式中L为材料厚度,S为材料面积。根据(15)式,对固定的电极而言,Re随电极极化电位或温度的变化反应了材料电导率随电极电位或者温度的变化。从本质上来说,嵌合物电极EIS谱的中高频区域的半圆是与活性材料电子电导率相关的。2.2.1. Re与温度的关系这里,材料电导率(与反应活化能相关)和温度的关系可以由Arrhenius方程给出(16)式中A为指前因子,Ea为热激活化能。将(15)、(16)两式联

8、立可得(17)将其变成对数形式得到(18)从(18)式可以得出,lnReT-1呈线性关系,根据直线的斜率可求得Ea的值。2.2.2. Re与电极极化电位的关系锂离子电池正极材料的电子导电率一般都比较小,属于半导体材料,按其导电机制的不同可分为n型半导体和p型半导体。由于导电机制不同,它们相应的Re与电极极化电位之间的关系也不同。这里以LiCoO2和LiMn2O4两种不同的半导体来阐述Re与温度的关系。LiCoO2是典型的p型半导体,主要靠空穴导电。对于LixCoO2,当x1时就具有部分充满的价带,每一个锂离子从LiCoO2晶格中脱出时,就会在价带中产生一个空穴,即(19)式中p为自由空穴的浓度

9、。当x0.75时,LixCoO2中具有足够的空穴产生有效的屏蔽,在这一区域价带的空穴发生离域化,从而使LixCoO2表现出金属的电导性能。LiCoO2正极在充放电过程中,其电子导电率可分为3个区域:(1)LixCoO2表现为半导体的区域;(2)空穴发生离域化的区域;(3)LixCoO2表现为金属的区域。p型半导体的电子导电率s可表示为(20)式中m为空穴迁移率,q为电子电荷。进一步假设LixCoO2中不存在锂离子之间或者锂离子与嵌锂空穴之间的相互作用,锂离子的嵌入过程可用Langmuir嵌入等温式(Langmuir insertion isotherm)来描述。(21)式中f=F/RT(F为法

10、拉第常数),E和E0分别为平衡状态下电极的实际和标准电极电位。由式(21)解得:(21-1)将其代入(19)式得到(22)将(15)与(20)两式联立,解得:或(22-1)则将(22-1)与(22)联立解得: (23-1)变成对数形式,则 (23-2)(这里利用泰勒级数展开进行近似的数学处理:;)这样,(23-2)可近似变为 (24)由此可知lnR与E之间呈线性关系。通过以上分析,对p型半导体而言,lnRe随E的变化规律呈现出3个不同的部分,即:(1)LixCoO2电导行为表现为半导体时,lnRe-E近似呈线性关系;(2)空穴发生离域化时,lnRe随E的改变将发生突变;(3)LixCoO2电导

11、行为表现为金属时,lnRe-E也近似呈线性关系。与LiCoO2为代表的p型半导体材料不同,尖晶石LiMn2O4为n型半导体材料,其电子的传导主要依靠电子在低价(Mn3+)和高价(Mn4+)离子之间的跃迁来实现,因此电子导电率主要由如下两个因素确定:(1)载流子(Mn3+中的电子)的量;(2)载流子的跃迁长度(Mn-Mn原子间的距离)。在锂离子脱出过程中一方面会引起Mn3+氧化为Mn4+导致载流子数量的减小,从而使尖晶石LiMn2O4电子导电率降低;另一方面,锂离子的脱嵌会引起尖晶石结构中Mn-Mn原子间距离的收缩,从而导致尖晶石LiMn2O4电子导电率的增高。实验结果表明载流子跃迁距离的减小是

12、导致锂离子脱嵌过程中电子导电率变化的主要原因。2.3. 中频谱解析实用化嵌合物电极EIS谱的中频区域是与电荷传递过程相关的一个半圆,可用一个Rct/Cdl并联电路表示,Rct和Cdl是表征电荷传递过程相关的基本参数。2.3.1. Rct与电极极化电位的关系锂离子在LiCoO2中的嵌入和脱出过程可表示为(1-x)Li+ + (1-x)e- + LixCoO2- LiCoO2(25)假定正向反应(锂离子嵌入反应)的速率正比于cT(1-x)和电极表面溶液中的锂离子浓度M+,这里cT(1-x)表示LixCoO2内待嵌入的自由位置,x为嵌锂度(intercalation level),cT为在LiCoO

13、2中锂离子的最大嵌入浓度(mol cm-3)。反向反应(锂离子脱出反应)的速率正比于cTx,cTx为已经被锂离子占有的位置,因此正向反应速率rf和反向反应速率rb可分别表示为rf = kfcT(1-x)M+(26)rb = kbcTx(27)按照Butler-Volmer方程,外电流密度i =rf - rb = nFcTkf(1-x)M+- kbx(28)式中n为反应中转移的电子数。锂离子嵌入引起的LiCoO2的摩尔嵌入自由能DGint的变化可表示为DGint = a + gx(29)式中a和g分别为每个嵌入位置周围嵌基的相互作用、两个相邻的嵌入锂离子之间相互作用有关的常数。按照活化络合物理论

14、,并考虑到锂离子嵌入引起的LiCoO2的摩尔嵌入自由能DGint的变化,则rf 和rb与电位的关系是(30)(31)两式中a是电化学反应的对称因子,kf、kb分别为由化学因素决定的正向和反向反应的反应速率常数,它由化学因素决定的反应活化能的关系可由Arrhenius公式给出(32)(33)将(28)式与(30)、(31)两式联立后得到(34)在平衡条件下,E=Ee,外电流密度i=0,因此交换电流密度i0可表示为(35)令k0为标准反应速率常数,根据交换电流密度i0与k0之间的关系式(详见电极过程动力学基础教程93页),(36)式中(37)在可逆状态下,反应的电荷传递电阻定义为:Rct = RT

15、/nFi0(38)将(36)、(38)两式联立,得到:(39)假定锂离子在嵌合物中的嵌入和脱出过程是可逆的,则a=0.5,式(39)可转换为(40)根据函数极值定理,当x=0.5时,Rct有极小值;当x0.5时,Rct随x增大而增大,即Rct随电极极化电位的增大出现先减小而后增大的趋势。在偏离平衡电位的条件下,特别是锂离子在嵌合物的脱出末期或嵌入初期,此时嵌合物活性材料中锂离子的含量非常少,也亦x0,此时式(21)可简化为(41)将式(41)代入式(39)可得(42)将(42)式变成对数形式,则(43)由式(43)可知,当x0,lnRct-E呈线性关系,从直线的斜率可求得电化学反应的对称因子a。2.3.2. Rct与温度之间的关系以锂离子嵌入反应为例,从式(32)、(37)和(39)可得(44)定义嵌入反应的活化能DG

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号