结构设计原理cha03b.

上传人:我** 文档编号:115017038 上传时间:2019-11-12 格式:PPT 页数:45 大小:2MB
返回 下载 相关 举报
结构设计原理cha03b._第1页
第1页 / 共45页
结构设计原理cha03b._第2页
第2页 / 共45页
结构设计原理cha03b._第3页
第3页 / 共45页
结构设计原理cha03b._第4页
第4页 / 共45页
结构设计原理cha03b._第5页
第5页 / 共45页
点击查看更多>>
资源描述

《结构设计原理cha03b.》由会员分享,可在线阅读,更多相关《结构设计原理cha03b.(45页珍藏版)》请在金锄头文库上搜索。

1、第三章 受弯构件正截面强度计算,3.1受弯构件的截面型式与构造,一 截面型式与尺寸,梁、板常用矩形、T形、I字形、槽形、空心板和倒 L形梁等对称和不对称截面,梁内力为M,Q。由规范知:,-重要性系数,取值分别为1.1,1.0,0.9,-弯矩组合设计值,(1) 梁、板的截面型式,(2) 梁、板的截面尺寸,1)矩形截面梁的高宽比h/b一般取2.03.5;T形截面梁的h/b一般取2.54.0(此处b为梁肋宽)。矩形截面的宽度或T形截面的肋宽b一般取为100、120、150、(180)、200、(220)、250和300mm,300mm以下的级差为50mm;括号中的数值仅用于木模。,2)梁的高度采用h

2、250、300、350、750、800、900、1000mm等尺寸。800mm以下的级差为50mm,以上的为l00mm。,3)现浇板的宽度一般较大,设计时可取单位宽度(b=1000mm)进行计算。,(3)材料选择,1)混凝土强度等级,梁、板常用的混凝土强度等级是C20、C30、C40。,2)钢筋强度等级及常用直径 ,梁中纵向受力钢筋宜采用HRB400级(级)和HRB335级(级),常用直径为12mm、14mm、16mm、18mm、20mm、22mm和25mm。根数最好不少于3(或4)根。,3)梁的箍筋宜采用R235级(级)、HRB335(级)常用直径是6mm、8mm和10mm,12mm。,4)

3、板的分布钢筋,当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。分布钢筋宜采用R235级(级)和HRB335级(级)级的钢筋,常用直径是6mm和8mm。,二 钢筋构造,钢筋 (Reinforced bar),设正截面上所有纵向受拉钢筋的合力点至截面受拉边缘的竖向距离为a,则合力点至截面受压区边缘的竖向距离h0ha。这里,h是截面高度,下面将讲到对正截面受弯承载力起作用的是h0,而不是h,所以称h0为截面的有效高度,称bh0为截面的有效面积,b是截面宽度。,a,h,0,纵向受拉钢筋的总截面面积用As表示,单位为mm2。纵向受拉钢筋总截面面积As与正截面的有效面积bh0

4、的比值,称为纵向受拉钢筋的配筋百分率,用表示,或简称配筋率,用百分数来计量,即,(31),纵向受力钢筋的外表面到截面边缘的垂直距离,称为混凝土保护层厚度,用c表示。,混凝土保护层有三个作用: 保护纵向钢筋不被锈蚀; 在火灾等情况下,使钢筋的温度上升缓慢; 使纵向钢筋与混凝土有较好的粘结。,钢筋最小保护层厚度,1 板钢筋的布置 Construction of reinforced bars for slab,两边支撑的板应按单向板计算;四边支撑的板,当长边与短边之比大于3,按单向板计算,否则按双向板计算,单跨简支板的最小厚度不小于1/35板跨;多跨连续板的最小厚度不小于1/40板跨,悬臂板最小厚

5、度不小于1/12板跨。,单向板 One-way Slab,双向板 Two-way Slab,悬臂板 Cantilever Slab,基础筏板 Raft Foundation Slab,混凝土保护层厚度一般不小于15mm和钢筋直径d; 钢筋直径通常为612mm的R235(级)钢筋;板厚度较大时,钢筋直径可用1418mm的HRB335(级)钢筋; 3. 受力钢筋间距一般在70200mm之间; 4. 垂直于受力钢筋的方向应布置分布钢筋,以便将荷载均匀地传递给受力钢筋,并便于在施工中固定受力钢筋的位置,同时也可抵抗温度和收缩等产生的应力。,2 梁钢筋的布置 Construction of reinfo

6、rced bars for beam,1主筋;2 主筋的弯起(及斜筋);3分布钢筋;4箍筋;5架立钢筋;6保护层,一 试验研究,As,f,3.2 受弯构件的正截面的受力全过程和破坏特征,e,M,cr,M,u,f,从开始加荷到受拉区混凝土开裂,梁的整个截面均参加受力。虽然受拉区混凝土在开裂以前有一定的塑性变形,但整个截面的受力基本接近线弹性。截面抗弯刚度较大,挠度和截面曲率很小,钢筋的应力也很小,且都与弯矩近似成正比。,当受拉边缘的拉应变达到混凝土极限拉应变时(et=etu),为截面即将开裂的临界状态,此时的弯矩值称为开裂弯矩Mcr( cracking moment),在开裂瞬间,开裂截面受拉区

7、混凝土退出工作,其开裂前承担的拉力将转移给钢筋承担,导致钢筋应力有一突然增加(应力重分布),这使中和轴比开裂前有较大上移。,荷载继续增加,钢筋拉应力、挠度变形不断增大,裂缝宽度也不断开展,但中和轴位置没有显著变化。由于受压区混凝土压应力不断增大,其弹塑性特性表现得越来越显著,受压区应力图形逐渐呈曲线分布。当荷载达到某一数值时,纵向受拉钢筋将开始屈服。,该阶段钢筋的拉应变和受压区混凝土的压应变都发展很快,截面受压区边缘纤维应变增大到混凝土极限压应变时,构件即开始破坏。其后,再进行试验时虽然仍可以继续变形,但所承受的弯矩将开始降低,最后受压区混凝土被压碎而导致构件完全破坏。,第一阶段:抗裂计算的依

8、据 第二阶段:构件在正常使用极限状态中 变形与裂缝宽度验算的依据 第三阶段:承载力极限状态计算的依据,弹性受力阶段(阶段):混凝土开裂前的未裂阶段,从开始加荷到受拉区混凝土开裂,梁的整个截面均参加受力,由于弯矩很小,沿梁高量测到的梁截面上各个纤维应变也小,且应变沿梁截面高度为直线变化。虽然受拉区混凝土在开裂以前有一定的塑性变形,但整个截面的受力基本接近线弹性,荷载-挠度曲线或弯矩-曲率曲线基本接近直线。截面抗弯刚度较大,挠度和截面曲率很小,钢筋的应力也很小,且都与弯矩近似成正比。,在弯矩增加到Mcr时,受拉区边缘纤维的应变值即将到达混凝土受弯时的极限拉应变实验值tu0,截面遂处于即将开裂状态,

9、称为第I阶段末,用Ia表示。,带裂缝工作阶段(阶段):混凝土开裂后至钢筋屈服前的裂缝阶段,在开裂瞬间,开裂截面受拉区混凝土退出工作,其开裂前承担的拉力将转移给钢筋承担,导致钢筋应力有一突然增加(应力重分布),这使中和轴比开裂前有较大上移。,M0=Mcr0时,在纯弯段抗拉能力最薄弱的某一截面处,当受拉区边缘纤维的拉应变值到达混凝土极限拉应变实验值tu0时,将首先出现第一条裂缝,一旦开裂,梁即由第I阶段转入为第阶段工作。,随着弯矩继续增大,受压区混凝土压应变与受拉钢筋的拉应变的实测值都不断增长,当应变的量测标距较大,跨越几条裂缝时,测得的应变沿截面高度的变化规律仍能符合平截面假定,,弯矩再增大,截

10、面曲率加大,同时主裂缝开展越来越宽。由于受压区混凝土应变不断增大,受压区混凝土应变增长速度比应力增长速度快,塑性性质表现得越来越明显,受压区应力图形呈曲线变化。当弯矩继续增大到受拉钢筋应力即将到达屈服强度fy0时,称为第阶段末,用a表示。,第阶段是截面混凝土裂缝发生、开展的阶段,在此阶段中梁是带裂缝工作的。其受力特点是:1)在裂缝截面处,受拉区大部分混凝土退出工作,拉力主要由纵向受拉钢筋承担,但钢筋没有屈服;2)受压区混凝土已有塑性变形,但不充分,压应力图形为只有上升段的曲线;3)弯矩与截面曲率是曲线关系,截面曲率与挠度的增长加快了。,屈服阶段(阶段):钢筋开始屈服至截面破坏的 破坏阶段,纵向

11、受力钢筋屈服后,正截面就进入第阶段工作。,钢筋屈服。截面曲率和梁的挠度也突然增大,裂缝宽度随之扩展并沿梁高向上延伸,中和轴继续上移,受压区高度进一步减小。弯矩再增大直至极限弯矩实验值Mu0时,称为第阶段末,用a表示。,在第阶段整个过程中,钢筋所承受的总拉力大致保持不变,但由于中和轴逐步上移,内力臂z略有增加,故截面极限弯矩Mu0略大于屈服弯矩My0可见第阶段是截面的破坏阶段,破坏始于纵向受拉钢筋屈服,终结于受压区混凝土压碎。,其特点是:1)纵向受拉钢筋屈服,拉力保持为常值;裂缝截面处,受拉区大部分混凝土已退出工作,受压区混凝土压应力曲线图形比较丰满,有上升段曲线,也有下降段曲线;2)弯矩还略有

12、增加;3)受压区边缘混凝土压应变达到其极限压应变实验值cu时,混凝土被压碎,截面破坏;4)弯矩曲率关系为接近水平的曲线。,a,a,a,M,cr,M,y,M,u,0,f,M/,M,u,适筋梁正截面受弯三个受力阶段的主要特点,二 破坏形式 (Failure modes),配筋合适的钢筋混凝土梁在屈服阶段这种承载力基本保持不变,变形可以持续很长的现象,表明在完全破坏以前具有很好的变形能力,破坏前可吸收较大的应变能,有明显的预兆,这种破坏称为“延性破坏”,超筋梁的破坏取决于混凝土的压坏,Mu与钢筋强度无关,且钢筋受拉强度未得到充分发挥,破坏又没有明显的预兆,因此,在工程中应避免采用。,配筋较少时,钢筋

13、有可能在梁一开裂时就进入强化段最终被拉断, 梁的破坏与素混凝土梁类似,属于受拉脆性破坏特征。少筋梁的这种受拉脆性破坏比超筋梁受压脆性破坏更为突然,很不安全,而且也很不经济,因此在结构中不容许采用。,混凝土梁的三种破坏形态,1)延性破坏:配筋合适的构件,具有一定的承载力,同时破坏时具有一定的延性,如适筋梁minb 。(钢筋的抗拉强度和混凝土的抗压强度都得到发挥),2)受拉脆性破坏:承载力很小,取决于混凝土的抗拉强度,破坏特征与素混凝土构件类似。虽然由于配筋使构件在破坏阶段表现出很长的破坏过程,但这种破坏是在混凝土一开裂就产生,没有预兆,也没有第二阶段,如少筋梁bmin 、少筋轴拉构件;(混凝土的

14、抗压强度未得到发挥),3)受压脆性破坏:具有较大的承载力,取决于混凝土受压强度,延性能力较差,如超筋梁b和轴压构件。(钢筋的受拉强度没有发挥),3.3 受弯构件正截面承载能力计算的基本原则,一 基本假定 ( Basic Assumptions ),1) 平截面假定,假设构件在弯矩作用下,变形后截面仍保持为平面;,2)钢筋与混凝土共同工作 钢筋与混凝土之间无粘结滑移破坏,钢筋的应变与其所在位置混凝土的 应变一致;,3)不考虑拉区混凝土参与工作 受拉区混凝土开裂后退出工作;,4)材料的本构关系 混凝土的受压本构关系和钢筋的受拉本构关系均采用理想简化模型。,规范应力应变关系,上升段:,水平段:,在极

15、限弯矩的计算中,仅需知道 C 的大小和作用位置yc即可。,可取等效矩形应力图形来代换受压区混凝土应力图。,等效原则: 等效矩形应力图形与实际抛物线应力图形的面积相等,即合力大小相等; 等效矩形应力图形与实际抛物线应力图形的形心位置相同,即合力作用点不变。,二 等效矩形应力图 ( Equivalent Rectangular Stress Block ),三 混凝土受压区高度界限系数,此处Es为钢筋的弹性模量。 设界限破坏时中和轴高度为xcb,则有,适筋梁与超筋梁的界限为“平衡配筋梁”,即在受拉纵筋屈服的同时,混凝土受压边缘纤维也达到其极限压应变值 ,截面破坏。设钢筋开始屈服时的应变为 ,则,设 ,称为界限相对受压区高度,(3-11),(3-12),式中 h0截面有效高度; xb界限受压区高度; fy纵向钢筋的抗拉强度设计值; 非均匀受压时混凝土极限压应变值。,当相对受压区高度 时,属于超筋梁。,当 时,属于界限情况,与此对应的纵向受拉钢筋的配筋率,称为界限配筋率,记作b,此时考虑截面上力的平衡条件,在式(3-11)中,以xb代替x,则有 故 其中, 中的下角b表示界限。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号