三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制.

上传人:我** 文档编号:114581252 上传时间:2019-11-11 格式:DOC 页数:13 大小:50.50KB
返回 下载 相关 举报
三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制._第1页
第1页 / 共13页
三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制._第2页
第2页 / 共13页
三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制._第3页
第3页 / 共13页
三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制._第4页
第4页 / 共13页
三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制._第5页
第5页 / 共13页
点击查看更多>>
资源描述

《三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制.》由会员分享,可在线阅读,更多相关《三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制.(13页珍藏版)》请在金锄头文库上搜索。

1、三相逆变器对电网输入电流单相整流二极管的塑造与小直流母线电容器直接功率控制实现小直流电容的二极管单相整流电路并网电流整形的三相逆变器直接功率控制 这篇文章表述的是没有通过功率因数校正(PFC)电路或输入过滤器由单相二极管整流器反馈电动机驱动器系统,本文所考虑的系统由单相二极管整流器,三相逆变器,以及小型直流母线电容器所组成。由于标准的系统直流母线电容是几F,所以电网输入电流的波形,直接受逆变器的电输出功率影响。采用这种方法,驱动系统的两个目标,控制电动机的转矩和抑制电网输入电流的谐波,可以通过控制所述逆变器的输出功率来同时实现。本文提出的方法包括参考电动机电流的产生和参考改变输出电压来调节直接

2、功率的输出。根据所提出的方法,可以通过IEC61000-3-2的限制来减小电网输入电流产生的高次谐波成分,这个方法比一般方法更好。此外,通过从系统中除去电解质的直流母线电容器和输入滤波器,逆变器系统的成本和尺寸可以显著降低。本文所提出的调整波形的方法,是通过使用电动机驱动系统用5F薄膜电容器在直流母线上的实验结果来验证的。1 介绍 电力电子技术的最新进展使得变速电动机广泛应用于低功耗的家庭用途。例如空调,冰箱,吸尘器等等。如图A所示,驱动变速电动机的单相交流电源通常是由三相逆变器,单相二极管整流器,直流母线电容器构成。在一般情况下,直流母线电容被设计成高值,使得系统保持直流母线电压的恒定。同样

3、的体积,电解电容器具有更高容量,因此被广泛用作母线电容器来减少系统体积。然而,电解电容器也有一些缺点。首先,当该电容器中电解质蒸发时,他的电流波纹和热量是脆弱的。基于这个特性,母线上的电解电容器在105的情况下寿命约万小时,而且温度每上升10,它的寿命就会减半。由于较短的寿命,电解电容器主要影响的驱动器电路的可靠性;约60的驱动电路的故障是由于电解电容器。另一个问题是,在现有的驱动是很难满足对电网的输入电流谐波的调节。由于恒定的直流链电压,非线性电网输入电流是不可避免的,如图1b所示。这些电流谐波增加对低压交流电网的应力,降低了电网质量,因此对电网谐波的输入电流进行了规定。连接到电网的设备应满

4、足要求。为使直流母线电容驱动满足要求,有必要利用线路感应滤波器或PFC来减少电流谐波。这些电路增加了成本而且使驱动电路体积庞大。 马达驱动器与直流母线的低电容已经开发克服了电解电容器的这些缺点。这种驱动器具有直流母线电容在以往的驱动器的电容的低于1,以使DC母线电压波动和二极管整流器持续地进行,如图中所示。图1(c)。在这种情况下,电容器的单位体积的低电容,例如薄膜电容器或陶瓷材质,可以在驱动器中的直流母线中使用。因为这些类型的电容器相比电解电容器允许更大的纹波电流和具有更长的寿命,驱动电路的可靠性也提高。通过使用在直流母线上的薄膜或陶瓷电容器,该驱动器的制造成本也降低了。这是因为薄膜电容器比

5、电解电容器更廉价且线路滤波器可以通过降低直流母线电容被减轻。在1kW电机的功率等级的变频器,每单元的制造成本包含直流母线电容和线路滤波器,这些如果用上薄膜或者陶瓷直流母线电容可节约成本10美元。由于直流母线电容容量较低,没有电解电容器的电路有缺点:该机通过驱动器的能力低于常规驱动的1。因此所提出的电机驱动器不能被应用到应用程序,其中,穿越能力是重要。然而,在处于低功耗和低性能应用中,穿越能力不是关键因素。几大家电企业使用这项功能,并用薄膜电容器做成产品。该方案还研究了这类应用。 若电动机驱动中没有电解电容器,为了抑制电网输入电流谐波,必须精确控制逆变器的输出功率。为了使电网输入点流成正弦,研究

6、了许多适用于无电解电容器的驱动器的电动机控制方法,但是他们很难抑制谐波,正是因为不当考虑关于逆变器输出功率的马达基准电流,则控制器的低带宽和电动机电流控制误差。本文提出了一种新兴的调整电网输入电流波形且无需电解电容器的驱动器。在驱动电路的直流母线电容器的设计准则示于第二节。对于正弦电网输入条件在第三节介绍。第四节解释电网输入电流整形方法,包括系统的稳定性分析。第五节验证了该方法的改进。 二,直流母线电容的设计考虑 通常来说,设计直流母线电容器的主要参考是直流母线电流波纹和电容器电流波纹。由于通常把电解电容器用作直流母线电容,电容被设计为使得电流纹波通过电容器维持在低于所述电容器的纹波电流限制。

7、通常也考虑由负载变化引起的母线电压波动。一般情况下,680F的电解电容器(波纹电流额定值为34A,之流额定电压400450V),可以在1千瓦的电机驱动中使用。这里,该值是由纹波电流确定,因为开关纹波电压和负载的波动是非常低的。另一方面,在薄膜或陶瓷电容器的情况下,纹波电流限制不是那么关键。设计的局限性是在开关纹波和在直流母线电压的负载波动。由于负载波动的能量比开关纹波高,在无任何负荷波动的应用中,应考虑包含小型直流母线电容器的逆变器系统。然后,最后的开关纹波电压可以只设计标准。负载波动可以通过对空调,泵以及压缩机等机器的控制来抑制。因此,小的直流母线电容器被认为仅应该在这些商品中配置。 大的电

8、压纹波会减小电机控制电压,产生电磁噪声,降低转换效率,因此限定直流母线电压的开关纹波在一定限度很重要。本文中,直流母线电容器应用5V的薄膜电容器,这就使得开关纹波,在额定功率低于直流母线电压峰值的10。通过使用薄膜电容器,与电解电容器相比,电容值被减小超过99%以上。 三 正弦电网输入电流条件 假设二极管整流器的电压降可忽略,电网的输入电流和直流母线电压值在Vg正极的情况下的关系如下面的方程式其中Rg和Lg是电网的电阻和电感,包括线路滤波器阻抗。图1(b)和(c)分别展示出有电解电容器和无电解电容器的驱动器中Vg,Vdc和Ig。负的Vg可以通过1公式转换为正的Vg。当电网正弦输入电流流过驱动器

9、时计算出的直流母线电压波形可从1式中算出,电机驱动的Rg和Lg的如此之小,它们可以被忽略。因此,当电网电压和电流是正弦,直流母线电压波形可以表示为2式。其中Vg和Ig分别是电网电压和电流的零-峰幅值,g是电网的相位角。二极管整流器被动的打开和关断,没有任何因素来控制电网侧的功率和直流母线电压。由于逆变器的输出功率是控制直流母线电压的唯一因素,其输出功率的形状,应准确地确定使直流母线电压为(2)。当电网输入电流为正弦波,从电网输入功率等于(3)这里,电力通过脉动直流母线电压的计算公式(4)。其中Cdc是直流母线电容器的电容值,g是交流电网的角速度。正弦电网输入电流下的逆变器输出功率为4式减去3式

10、。换句话说,控制Pinv是为了获得电动机驱动下的电网正弦输入电流。逆变器的输出功率是由电动机电流矢量和电动机的电压矢量的内积来确定,如(6)中。在同步参考帧使用IPM的DQ电压方程(7),导出(6)作为电动机机械功率,电动机道统损耗,以及通过改变电动机电流得到的电感(如8)。 其中vd, vq, id, iq, Rs, Ld, Lq, f, and r在任意d-q参考系下电机的电压和电流,定子电阻,d-q轴电感,通量的永磁电动机,电动机的角速度。不要忘记调节2式中Vdc作为逆变器的输出电压,考虑到连接到驱动的电机在高速运转情况下,电动机的线电压可以比直流母线电压更高。这导致了热量的产生和直流母

11、线电压的升高。为了避免这一现象,逆变器输出电压参考值*outvis 被控制在小于等于逆变器输出电压的限定值下,如9式。其中Vd和Vq分别是在任意dq参考系下逆变器输出电压的绝对值。 四,电网输入电流波形的建议 该方法的框图如图2电流基准发生器,其输出功率控制器加到提出的级联速度和电流控制器,和过调制方法考虑到直流母线电路的波动。在这种方法下,快速电网输入电流可确保式5和9. A基准值的产生其中rm和Te*是转速和电动机的力矩参考。作为Plos和Pind中的数值,Ig比计算值要大,这里 ,为了找出系统角g,Vg和Vdc被当做锁相环的输入,如图2 以dq电流为基准,9,10被表示为11,12,表示

12、电动机在dq基准下电流通过求解(11)和(12),当满足这两个条件时,dq电流波形可以计算出来。但是,由于条件有非线性项,它需要复杂的算法和长的时间来获得精确的解决方案。为了快速解决问题,建议用电机电流基准产生方法大致计算出电机电流的参考。13式表示使用傅立叶级数近似的dq电流波形。其中Id,k,Iq,k,D,k和q,k分别表示在零至峰振幅和在dq电流的第k次谐波成分的相位。因为PINV和Vdc波动是电网频率的两倍,傅里叶级数的基本一个被定义为这样的频率。n的值由考虑到电动机的电流控制器的带宽来确定。如果n大,则基准值含高频谐波分量,而且因为有限的带宽,谐波无法控制。相反的,如果n小,由近似的

13、电流基准输出的功率与输出功率参考值(10)误差较大。基准计算过程如下。首先,dq电流波形可以通过13式设置幅度变量和角度。这一步中,Id,0 and Iq,0要求满足力矩参考。输出功率误差和输出电压的幅度可以通过将其代 - (11)和(12)中找到。通过改变这些变量和重复上述的过程中,两个条件的解决方案最大程度地减少这些误差。图3显示了生成当前参考的例子。可以发现,所计算出的电流参考值大致同时满足(11)和(12)。需要大量的计算时间以搜寻中(13)满足式(11)和(12)的系数。在采样期间很难完成这种计算,所以在几个操作点的基准值在线下计算并存储为查找表。在电动机电流控制器中,前馈电压基准被

14、用于补偿背面电动势(EMF)的效果。由于电动机的两个的dq电流会发生波动,该前馈电压基准的补偿是在所提出的电动机驱动的情况下更加重要。dq前馈电压基准值被表示为(14)由于逆变器的输出功率波动两倍于电网频率,n取零时与n取1时的优劣在13中比较,调节电机的电流为脉动参考最小化的控制延迟,电动机电流控制器的带宽被设计得足够高于参考的占主导地位的频率30 - 33。电动机控制的闭环增益系统包括PI电流控制器和15中所示的电机厂。式中,R,L和cc是电动机,分别对电阻,电动机的电感,以及PI电流控制器的带宽。所述离散的开关效应可以忽略不计,因为切换频率比底片极(15)中的幅度高得多。在本文中,电动机

15、电流控制器的带宽被设定为600Hz。在此带宽下,相位延迟在s =120Hz的是大约10。B 由参考电压直接控制逆变器输出功率由于电流控制器具有低带宽不能跟随高顺序参考,电网输入电流谐波不能仅由电动机电流的控制与上述的dq电流基准精确地抑制。由于无需电解电容器的驱动器的谐振频率通常比电流控制器的带宽更高,电流控制器还不能阻断线路电感和直流链电容器之间的高频谐振电流。所提出的电机驱动器是电压源逆变器(VSI)类型,并且它可以产生输出电压在一个开关周期的基准。因此,与由输出电压控制直接控制的逆变器的输出功率,逆变器的输出功率,可以更正确地跟随参考,也比使用电动机电流控制的常规方法更快。电动机电流矢量

16、和从电流控制器的输出电压的基准矢量计算出的输出功率不等于在输出功率参考值(10),所述参考电压矢量被修改,以补偿该差。由于参考电压修饰可以影响电流控制器的性能和电机电流的动态变化,尽量减少这些影响是必要的。图4示出所提出的输出电压的参考变形例的矢量图。在图4中,。是从电流控制器,在dq前馈电压参考,最终输出的参考电压在dq参考电压,并且DQ电流向量。虚线垂直于电流向量是其产生的输出功率的电压矢量轨迹。P时从V中计算得出的输出功率。在此向量图,表示电压扰动向电流控制器,是动态电压分量,这和电机的电流的动态相关。电动机的电流可以增加,其中。该是小的稳定电动机的电流控制。因此,电压基准值沿的最短路径修改,这个电压改变方法可以最大限度地减少对电机控制的影响。如图4中bc所示,输出电压基准中的情况下相同的方式修改的* invP比。都

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号