发动机设计重点.

上传人:我** 文档编号:114445422 上传时间:2019-11-11 格式:DOCX 页数:18 大小:516.85KB
返回 下载 相关 举报
发动机设计重点._第1页
第1页 / 共18页
发动机设计重点._第2页
第2页 / 共18页
发动机设计重点._第3页
第3页 / 共18页
发动机设计重点._第4页
第4页 / 共18页
发动机设计重点._第5页
第5页 / 共18页
点击查看更多>>
资源描述

《发动机设计重点.》由会员分享,可在线阅读,更多相关《发动机设计重点.(18页珍藏版)》请在金锄头文库上搜索。

1、一 如何提高发动机的动力性平均有效压力pe:是标志发动机工作循环的有效性和制造完善性的指标之一 (非增压) (增压)Pa:单位气缸工作容积所作的指示功,反映发动机工作循环的热功转换的有效程度和气缸工作容积的利用效率因此,提高pe必须:提高V:a. 合理设计进气系统,尤其是进气道,以减小进气阻力,提高充量系数b. 合理的配气机构和配气定时:加大进气门直径,采用顶置式凸轮轴,增加气门数、完善凸轮外形、最佳气门重叠角c. 汽油机采用多腔化油器、多个化油器、汽油喷射,以减小进气阻力,并兼顾各工况性能d. 降低排气系统阻力,采用可变进排气系统(利用其中的动态效应)等提高i:a. 对于汽油机适当提高压缩比

2、b. 改善燃烧过程提高m: 减少活塞环数目;选择适当的润滑油;保持发动机的最佳热状态;提高加工精度和表面质量;合理设计活塞形 状;减少附件功率损失提高s:具体措施即增压,是提高pe主要措施,对柴油机一般可提高3040%,增压中冷可提高5070%,而成本只增加810%,发动机质量增大35%;对于汽油机,化油器式仅用于高原恢复功率(海拔每增加1000m,功率下降10%)。现代四冲程增压柴油机pe最高可达3.2Mpa,车用机上达到1.41.8Mpa二:活塞速度的影响活塞平均速度Cm=Sn/30, Cm上升,则机械负荷上升;热负荷上升;进排气阻力增加,充气系数v下降(应加大气门或增加气门数目) ;摩擦

3、加剧,磨损加快,机械效率下降,燃油耗率上升,寿命下降。但Cm过小,对提高发动机功率不利,对提高升功率不利。对于柴油机,Cm选择要顾及混合气形成与燃烧的限制;对于汽油机,Cm的选择与进气系统有关三、活塞速度和加速度什么时候最大3.1、活塞速度: (精确式) (近似式)活塞最大速度最大速度时曲轴转角由活塞速度精确式,近似取cos=1,在近似估计时,可认为最大速度出现在+=90时,即连杆中心线与曲柄成直角位置,此时活塞平均速度3.2活塞加速度由近似式可得出活塞加速度的最大值和最小值: 当1/4时,=0时活塞正向最大加速度 (极大值) 时活塞负向最大加速度 (极小值,在180360范围内还有一个)=1

4、80时活塞的加速度已不是最大负向加速度 (极大值)对于中低速柴油机其连杆较长,小于1/4,活塞加速度在360范围内只有两个极值;对于高速内燃机,一般大于1/4,活塞加速度在360范围内有四个极值四、连杆运动形式和质量换算连杆在摆动平面内的运动是随活塞的往复运动和绕活塞销的摆动的复合运动。五、采用偏心曲柄连杆机构的作用和原因1、采用偏心曲柄连杆机构的原因凡是曲轴回转中心线或者活塞销中心线不与气缸中心线相交的曲柄连杆机构都是偏心机构。根据偏心方向的不同,分为正偏心机构和负偏心机构。正偏心机构(如图a、图b所示)在活塞下行时连杆摆角较小,使得作功行程中活塞侧推力有所减小。负偏心机构广泛应用于车用汽油

5、机中,目的是减轻活塞对气缸壁的敲击,降低运转噪声。正偏心机构多用于柴油机,目的是改善散热,减轻主推力边的热负荷,使顶环隙整个圆周上不积碳。 六、偏心曲柄连杆机构受力分析 气体作用力 惯性力 作用在曲柄连杆 重力 机构上的作用力 负荷的反作用扭矩及机构的支撑反力 机构相对运动的摩擦力七、曲柄连杆机构的换算质量 曲柄连杆机构加速度有往复运动加速度和离心运动加速度两种,计算两种加速度引起的惯性力需将整个曲柄连杆机构的质量分别换算成往复运动质量和离心运动质量。 1、 活塞组质量mp:含活塞、活塞环、活塞销质量2、曲柄换算质量mk: 式中 mz曲柄销部分质量;m单个曲柄臂不平衡质量; 曲柄臂不平衡质量质

6、心到曲轴回转中心距离3、 连杆组换算质量 常采用的方法为二质量替代系统:用集中在小头处的换算质量mCA和集中在大头处的质量mCB来代替连杆的实际质量。换算的原则是: 换算系统两质量之和等于原连杆的质量mC,即 mCA+mCB=mC 换算系统的质心与原连杆质心重合,即 mCAlA=mCBlBlA:连杆质心至连杆小头中心距离lB:连杆质心至连杆大头中心距离由上述两个条件得对于有的高速发动机还须满足一个条件: 两个换算质量对连杆质心的转动惯量之和等于原来连杆的转动惯量,即 式中IC为原连杆的转动惯量。但采用二质量替代系统时,在连杆摆动角加速度下的惯性力矩要偏大 MC=(mCAlA2+mCBlB2)-

7、IC 为此,可用三质量替代系统:通常m较小。为确定mCA、mCB需要知道连杆组的质心位置,为此可用天平称量法、力学索多边形法确定质心,现在的三维CAD软件也有此功能。最后可得出整个曲柄连杆机构的换算质量:往复运动质量 旋转运动质量 八、单缸机的输出扭矩由切向力确定:即MK可理解为两部分:一由Pg产生,一由Pj产生,其中Pj产生的扭矩在曲轴旋转一周内所做的功为零。它只影响总输出扭矩的波动规律。九、单列发动机的曲柄排列与发火顺序曲柄排列与发火顺序直接相关。决定发动机的曲柄排列与发火顺序时,应考虑下面几个方面:1、各缸发火间隔尽可能均匀(间隔角尽可能相同)一台发动机的所有气缸都应在一个工作循环内发火

8、完毕,并希望各缸间的发火间隔尽可能相等。单列式发动机的发火间隔角:二冲程机 四冲程机 对于二冲程及奇数缸四冲程机 对于偶数缸的四冲程机 (即在曲柄端面图上看到的曲柄数为缸数的一半) 可以看出:对于二冲程及偶数四冲程机, =;对于奇数缸四冲程机,=22、整机有较好的平衡性3、尽量避免相邻缸连续发火4、发动机轴系扭转振动较小5、对于涡轮增压发动机的排气管分支的影响十、V型机的发火顺序V型发动机相当于两台单列发动机共用一根曲轴,并按一定夹角布置而结合起来的发动机。与单列机相比,曲柄端面图没有不同,但缸数已翻倍。V型机发火方案有两种:1、 交替式发火方案:两列气缸交替发火,列内顺序与单列机相同,间隔均

9、匀,但与单列机相比列内发火间隔角大一倍;两列气缸的发火顺序相同。2、插入式发火方案:两列气缸间的发火顺序与间隔角不相同,列内的发火间隔也不均匀,两列气缸间有跳隔和补偿,使得整台机的发火间隔均匀十一、内燃机的平衡一、研究平衡的目的:1、分析各种结构机型内燃机的平衡性能,为设计选型提供预测和依据;2、寻求改善内燃机平衡状态的措施:如采用适当的气缸数、曲柄排列和曲柄布置方案、在曲轴上设置平衡重、采用专门的平衡机构等。二、平衡的定义1、平衡:内燃机在稳定工况运转时,如果传给支承的作用力的大小和方向均不随时间变化,则称内燃机是平衡的。三、平衡的分类2、外平衡与内平衡:研究发动机不平衡力和力矩对外界(支承

10、)的影响,称为外平衡问题。对采取了外平衡措施的发动机还要进行内力矩和剪力分析,称为内平衡。3、静平衡与动平衡:静平衡:旋转质量系统的质心在旋转轴线上时,系统离心惯性力的合力为零,则认为系统是静平衡的(因质心是否位于旋转轴线可以静态检测,故得名)。动平衡:系统静平衡但当旋转质量不在同一平面上时,不足以保证运转平稳,如图表示,只有当系统运转时不但旋转惯性力合力为零,而且合力矩也为零时,才完全平衡,这样的平衡称为动平衡四各力平衡的方法单缸机的振动力源:往复惯性力离心惯性力倾覆力矩Md 一、离心惯性力Pr 如图所示,对于离心惯性力Pr可用直接在曲轴上加平衡重的方法来平衡,设两块平衡重质量均为mB,则有

11、 从而可求出每块平衡块的质量为 可见,平衡块回转半径越大、曲柄连杆机构本身的不平衡旋转质量越小,则所需要加的平衡块质量mB 越小。二、往复惯性力PJi、PjII按活塞加速度近似式,往复惯性力可写成为分析往复惯性力的平衡法,可进一步将往复惯性力写成:其中 因此往复惯性力PjI(或PjII)可看成两个以角速度(或2)朝相反方向旋转的矢量C/2(或C/2)之和,这两个矢量分别称为正转矢量(AI或AII)和反转矢量(BI或BII),两个矢量重合位置与气缸中心线平行。亦即往复惯性力可以分别转换成两个离心力:两个质量mj/2(或1/2mj/4)在半径R处以角速度(或2)朝相反方向转动所产生的离心力。由以上

12、分析可以看出,可以用与平衡离心惯性力同样的方法来平衡往复惯性力,只要设计的平衡机构产生的离心惯性力矢量分别与上述正反转矢量大小相等、方向相反即可。 对于缸径不大的单缸机,有时为了结构简化,常省去一根与曲轴同旋向的平衡轴,而采用如图(b)所示的单轴平衡机构。采用单轴平衡机构时,一阶往复惯性力也得到了平衡,但破坏了平衡机构的对称性,与双轴平衡机构相比,又产生了一个附加力矩在缸径更小的单缸机中,为了使结构尽可能简单,常常连单轴平衡机构也省略,而采用所谓的过量平衡法。此时曲柄上除了有平衡mr的平衡块质量外,还要多加一过量的平衡质量mj,使其产生过量的离心力C(01),称为过量平衡率。可以看出合力R的矢

13、端轨迹是一个椭圆。当=1/2时,合力矢端轨迹变为半径为C/2的圆,即R=C/2的数值不变,不过与曲柄反向旋转。注意:不能将此力看成曲柄连杆机构的离心力。十二、过量平衡法的实质是什么过量平衡法实质上是一阶往复惯性力的转移法,即把一阶往复惯性力的一部分转移到与之垂直的平面内。至于转移数量的大小,则要根据具体发动机在垂直与水平两个方向的刚度或吸振能力而定,一般总是希望较大的惯性力作用在发动机刚度较大的方向或吸振能力较好的方向。大小可根据实验确定,通常=0.30.5。十三、内燃机内平衡分析采用不同的曲柄排列形式,曲轴及机体上所受的弯矩也将不同。当某种曲柄排列具有最小的作用弯矩时,则认为发动机的内平衡性能

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号