无机材料的热学性能-第1讲.

上传人:我** 文档编号:114117898 上传时间:2019-11-10 格式:PPT 页数:62 大小:4.41MB
返回 下载 相关 举报
无机材料的热学性能-第1讲._第1页
第1页 / 共62页
无机材料的热学性能-第1讲._第2页
第2页 / 共62页
无机材料的热学性能-第1讲._第3页
第3页 / 共62页
无机材料的热学性能-第1讲._第4页
第4页 / 共62页
无机材料的热学性能-第1讲._第5页
第5页 / 共62页
点击查看更多>>
资源描述

《无机材料的热学性能-第1讲.》由会员分享,可在线阅读,更多相关《无机材料的热学性能-第1讲.(62页珍藏版)》请在金锄头文库上搜索。

1、无机材料的热学性能,热学性能的应用 热学性能的物理基础 热容 热膨胀 热传导 热稳定性,我们主要关心的热学性能是: 热容:改变温度水平所需的热量 热膨胀系数:温度变化1时体积或线尺寸的相对变化 热导率:每单位温度梯度时通过物体所传导热量 热稳定性:承受温度的急剧变化而不致破坏的能力,材料及其制品都在一定的温度环境下使用,在使用过程中,将对不同的温度作出反映,表现出不同的热物理性能,这些热物理性能就称为材料的热学性能。,热学性能的应用,热处理时,热容和热导率决定了陶瓷体中温度变化的速率,是决定抗热应力的基础,同时也决定操作温度和温度梯度。用作隔热材料时,低的热导率是必需的性能。 陶瓷体或组织中的

2、不同组分由于温度变化而产生不均匀膨胀,能够引起相当大的应力。在研制合适的涂层、釉和搪瓷以及将陶瓷和其他材料结合使用时所发生的最常见的困难是起因于温度所引起的尺寸变化。,一、在陶瓷制备和使用中的应用,二、在保温材料中的应用,据推算,我国各类窑炉和输热管道,由于保温不 善,每年的热损失折合标煤约为30004000万吨。若 能使热减少1520%,就可节约标煤600800万吨, 而保温材料节能技术关键点如下:,保温材料的优选和保温材料结构的优化设计: 关键热性能参数是材料的导热系数,要求最小 (热导率)值时相对应的最佳容重和最佳 内部结构。,三、在电子技术和计算机技术中的应用,在超大规模集成电路中,要

3、求集成块的基底材料 导热性能优良,以免集成块温度骤增,热噪声增大。 关键是寻找出既能绝缘,又具有高导热系数的材料。 日本已发明了一种高导热性的特种碳化硅陶瓷,其 导热系数比一般碳化硅高一个数量级,比氧化铝高 14倍,且热膨胀性能与半导体硅相匹配。,彩电等多种电路中广泛应用的大功率管,其底部的有机绝缘片,为了散热而要求具有良好的热导性。,3.1 热学性能的物理基础,热性能的物理本质:晶格热振动,1、热性能的物理本质,晶格热振动是非简谐振动; 晶格热振动是三维的; 晶格热振动是诸质点的集体振动。,晶格热振动:固体材料是由构成材料的质点(原 子、离子)按一定晶格点阵排列堆积而成,一定温度下,点阵中的

4、质点总是围绕其平衡位置作微小的振动,称为晶格热振动。,(动能)i =热量,各质点热运动时动能总和就是该物体的热量!,2、晶格热振动的定义及特点,3、简谐振动,简谐振动:物体在跟偏离平衡位置的位移大小成正比、方向总是指向平衡位置的回复力作用下的振动 ;或物体的运动参量(位移、速度、加速度)随时间按正弦或余弦规律变化的振动。,式中:X为位移;A为振幅,即质点离开平衡位置时 (x=0) 的最大位移绝对值;t为时间;T为简谐振动的周期; 为简谐振动的位相。,简谐振动 F-r 线性,非简谐振动 F-r 非线性,原子间力与原子间距关系(F-r)图,4、原子的简谐振动和非简谐振动,温度,振幅和振动频率,质点

5、的平衡位置改变, 相邻间质点平均距离,表现出非简谐振动的特点。,5、一维单原子晶格的线性振动方程,+,牛顿第二定律: F=d(mv)/dt (牛顿发表的原始公式),式中:m每个质点的质量;,微观弹性模量,与质点间作用力性质有关的常数。 对于每个质点,不同即每个质点在热振动时都有一定的 频率。材料内有N个质点,就有N个频率的振动组合一起。,材料质点间有很强的相互作用力,一个质点的振动会使邻近质点随之振动。相邻质点间的振动存在一定的位相差,每个质点振动可以看成以弹性波的形式在晶格中传播,称为格波。,6、格波,声频支格波:反映各晶胞间的相对运动,是以晶胞整体进行振动的单位。能量小,频率低(声频范围,

6、 1.51013Hz),以声波的形式出现的驻波。质点彼此之间的位相差不大,相邻质点振动方向相同。,晶体中的振子的振动频率不止一个,而是一个频谱, 振子是以不同频率的格波叠加起来的合波进行运动。,光频支格波:反映原胞内各原子间的相对振动,能量大,频率高(红外光区),振动时原胞的质量中心保持不动,只是不同原子的相对振动。质点彼此之间的位相差很大,邻近质点的运动几乎相反。,固体的热容是原子振动在宏观性质上的一个最直接的表现 !,热容:物体温度升高1K所需要增加的能量,它反映材料从周围环境中吸收热量的能力。,(J/K),对于一定的材料,质量不同热容不同,温度不同热容也不同。,1、热容的基本概念及分类,

7、3.2 无机材料的热容,恒压热容:加热过程在恒压下进行,恒容热容:加热过程在恒容下进行,T1-T2 范围愈大,精度愈差,平均热容:,Q:热量 E:内能 H(=E+pV):焓,气体材料:T,体积膨胀,对外界做功,吸收Q 因此:,恒压加热过程:,热力学第二定律,:体膨胀系数 V0:摩尔容积 :压缩系数,固体或液体:T,体积变化小,因此:,高温时,固体或液体的Cp与Cv的差别较大!,2、固体的经典热容理论,(1)元素的热容定律杜隆一珀替定律 恒压下,元素的原子热容为:,成功之处:高温下与试验结果基本符合。,对于轻元素的原子热容需改用如下数值:,(2)化合物的热容定律柯普定律,化合物分子热容等于构成该

8、化合物各元素原子热容之和。,式中:ni为化合物中元素i的原子数,ci为元素i的摩尔 热容。,局限性: 不能说明高温下,不同温度下热容的微小差别 不能说明低温下,热容随温度的降低而减小,在接近绝对零度时,热容按T的三次方趋近于零的试验结果,经典热容理论对两个经验定律的解释: 晶体格点是孤立的,能量是连续的,且按自由度均分。 每个原子有3个振动自由度 每个振动自由度能量=平均动能( )+平均势能( ) 每个原子振动能量=3kT 1mol 物质的总能量=3NAkT NA :阿佛加德罗常数 k :玻尔茨曼常数,由上式可知,热容是与温度T无关的常数 这就是杜隆一珀替定律。,按摩尔热容定义:,对于双原子的

9、固态化合物的摩尔热容 : 其余依此类推。,实际材料中: 高温时:杜隆珀替定律与实验结果很吻合。 低温时:CV 的实验值并不是一个恒量. 与T3成比例,渐趋于零。,经典热容理论只适用于特定的温度范围!,3、固体热容的量子理论,(1). 振子能量量子化,质点热振动能量是量子化的,能级间隔hv,hv是这种量子化弹性波的最小单位,称为量子或声子。,h:普朗克常数 v: 频率,振子的能级在0k时为1/2 hv 零点能。依次的能级是每隔hv升高一级,一般忽略零点能。,一定温度下,一定频率的振子获得能量占据n能级的几率:,(2). 振子在不同能级的分布服从波尔兹曼能量分布规律,(3). 温度T、振动频率v的

10、振子的平均能量,(4). 在温度T时的平均声子数,说明:受热晶体的温度升高,实质上是晶体中热激发出声子的数目增加。,晶体中的振子(振动频率)不止是一种,而是一个频谱。,(5). 振子是以不同频率格波叠加起来的合波进行运动,nav=E (v)/ hv,1,exp( hv/kBT) 1,=,高温时:,即:,所以:,每个振子单向振动的总能量与经典理论一致 1mol 物质的总能量=3NAkT,与杜隆 珀替定律相符!,如果不仅仅局限于高温区 整个温度范围内,3N个振子,总的能量,晶体总的热容:,这就是按照量子理论求得的热容表达式。 但要计算CV 必须知道每个振子的频谱v非常困难。 因此:(一)爱因斯坦模

11、型 (二)德拜模型,模型要点: (1)每个原子皆为一个独立的振子,原子之间彼此无关 (2)认为晶体中所有原子都以相同的频率振动,设为v0 体系规定: N个原子组成,共有3N个频率为v0的振动,(一). 爱因斯坦模型,热容:,爱因斯坦特征温度:,大多数固体: E=100K300K,高温区:,TE,,低温区:,低温区域,CV值按指数规律随温度T而变化,而不是从实验中得出的按T3变化的规律。 忽略了各格波的频率差别,其假设过于简化。,金刚石:E=1320K 理论值(线)与实验值(点)比较 低温范围内,爱因斯坦理论值下降比较陡,模型要点: (1)考虑了晶体中原子的相互作用,每个原子都有其固有频率。 (

12、2)晶体对热容的贡献主要是弹性波的振动,即较长的声频支在低温下的振动;高于max的频率在光频支范围,对热容贡献很小,可忽略。 (3)由于声频支的波长远大于晶格常数,故可将晶体当成是连续介质,声频支也是连续的,频率具有0max,(二)德拜比热模型,高温区:, 杜隆珀替定律,低温区:,与T3成正比,德拜定律表明: 当T0时,CV与T3成正比并趋于0。 它与实验结果十分吻合,温度越低,近似越好。,德拜理论与实验比较 (实验点是镱的测量值 线是德拜理论计算值),德拜理论的不足 因为在非常低的温度下,只有长波的的激发是主要的,对于长波晶格是可以看作连续介质的。 德拜理论在温度越低的条件下,符合越好。 如

13、果德拜模型在各种温度下都符合,则德拜温度和温度无关。实际上,不是这样。,4、 热容随温度变化的本质,以声子为单位增加振子能量,(1). T,一定频率v的振子占据高能级的几率增加,低频率的振子需要激发到高能级需要的hv值比较小,先激发占据高能级。 T再,高频率的振子hv值也得到满足,激发到高能级,激发声子数 显著, (2). T 0K,kThv,吸收的能量很小,最低频率的振子也不能被激发到更高的能级,没有声子被激发。,(3). 当T, kThv, 最大频率的振子也被激发到高能级,kT=hvmax, 即德拜特征温度 所有振子占据高能级的几率为1, T 再,不同频率的振子获得能量占据更高能级所激发的

14、声子数相同。,温度 升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化!,5、影响热容的因素,(1) 温度影响,T=0K, C=0 T D C3R,(2)相变,相变时,由于热量的不连续变化,使热熔出现突变,(3) 德拜温度约为熔点的0.2-0.5倍 (4)高温下,化合物的摩尔热容等于构成该化合物各元素原子热容之和。(柯普定律) (5)多相复合材料的热容,(6)无机材料的热容对材料的结构不敏感 混合物与同组成单一化合物的热容基本相同。,gi :材料中第i种组成的重量% Ci:材料中第i组成的比热容,(7)单位体积的热容与气孔率有关 :多孔材料热容小,根据热容选材: 材料升高一度,需吸

15、收的热量不同,吸收热量小,热损耗小,同一组成,质量不同热容也不同,质量轻,热容小。对于隔热材料,需使用轻质隔热砖,便于炉体迅速升温,同时降低热量损耗。,小 结, 热容是晶体的内能对温度求导。 内能是所有振动格波的能量之和。 某一振动格波是以阶梯的形式占有能量,两相邻能级相差一个声子,在n能级上的振动几率服从波尔兹曼能量分布规律 。 每一格波所具有的能量为该格波的平均能量,平均能量与声子的能量之比为平均声子数。 德拜根据假设,求出热容与温度的函数,且定义m/ kB为德拜温度,通过平均声子数与温度的关系可知,在温度大于德拜温度时,最大频率的格波被激发出来。 德拜模型成功地解释了杜隆伯替定律,但由于

16、德拜模型是在一定的假设条件下建立的,因此仍存在不足。,物体的体积或长度随温度的升高而增大的现象称为热膨胀。,1、热膨胀系数,物体原来长度为l0,温度升高t后,长度增量为l,则有:,线膨胀系数:温度升高1K时,物体的相对伸长。,物体在温度t时的长度为:,实际上固体材料al并不是一个常数,通常随温度升高而增大。无机材料的线膨胀系数都不大,数量级约为10-510-6/K.,(1). 线膨胀系数,3.2 无机材料的热膨胀,物体体积与温度的关系为:,体膨胀系数:温度升高1K时,物体体积的的相对增大值。,(2). 体膨胀系数,由于热膨胀系数随温度的变化而变化,上述的值是指定温度范围内的平均值,应用时要注意适用的温度范围。,膨胀系数的精确表达式为:,一般隔热用耐火材料的线膨胀系数常指201000范围内的al平均数。,研究固态相变 仪表工业 多相多晶材料以及

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号