通信原理实验(2015)_61459 (1)

上传人:我** 文档编号:113643461 上传时间:2019-11-09 格式:DOC 页数:59 大小:1.94MB
返回 下载 相关 举报
通信原理实验(2015)_61459 (1)_第1页
第1页 / 共59页
通信原理实验(2015)_61459 (1)_第2页
第2页 / 共59页
通信原理实验(2015)_61459 (1)_第3页
第3页 / 共59页
通信原理实验(2015)_61459 (1)_第4页
第4页 / 共59页
通信原理实验(2015)_61459 (1)_第5页
第5页 / 共59页
点击查看更多>>
资源描述

《通信原理实验(2015)_61459 (1)》由会员分享,可在线阅读,更多相关《通信原理实验(2015)_61459 (1)(59页珍藏版)》请在金锄头文库上搜索。

1、通信原理实验指导书(本 科)通信技术教研室2012年3月18信号源介绍一、数字信号源CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。它由CPLD可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。晶振JZ1用来产生系统内的32.768MHz主时钟。1、 信号源模块的电源开关为POWER1。 2、 各个输出端口介绍CLK1:第一组时钟信号输出端口,通过拨码开关S4选择频率。CLK2:第二组时钟信号输出端口,通过拨码开关S5选择频率。FS:脉冲编码调制的帧同步信号输出端口。(窄脉冲,频率为8K)NRZ:24位NRZ信号输出端口,码型由拨码开关S1

2、,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。PN:伪随机序列输出,码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。NRZIN:解码后NRZ码输入。BS:NRZ码解复用时的位同步信号输入。FSIN:NRZ码解复用时的帧同步信号输入。3、信号源输出两组时钟信号,对应输出点为“CLK1”和“CLK2”,拨码开关S4的作用是改变第一组时钟“CLK1”的输出频率,拨码开关S5的作用是改变第二组时钟“CLK2”的输出频率。拨码开关拨上为1,拨下为0,拨码开关和时钟的对应关系如下表所示表0-2拨码开关时钟拨码开关时钟000032.768M1000128K00011

3、6.384M100164K00108.192M101032K00114.096M101116K01002.048M11008K01011.024M11014K0110512K11102K0111256K11111K1) 根据表0-2改变S4,用示波器观测第一组时钟信号“CLK1”的输出波形;2) 根据表0-2改变S5,用示波器观测第二组时钟信号“CLK2”的输出波形。4、信号源提供脉冲编码调制的帧同步信号,在点“FS”输出,一般时钟设置为2.048M、256K,在后面的实验中有用到。将拨码开关S4分别设置为“0100”、“0111”或别的数字,用示波器观测“FS”的输出波形。5、信号源提供伪随

4、机信号输出。伪随机信号码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。根据表0-2改变S4,用示波器观测“PN”的输出波形。6、信号源提供24位NRZ码,码型由拨码开关S1,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。二、模拟信号源模拟信号源电路用来产生实验所需的各种低频信号:同步正弦波信号、非同步信号和音乐信号。1、信号源模块的电源开关为POWER1。2、各信号输出端口介绍2K同步正弦波:2K的正弦波信号输出端口,幅度(05V)由W1调节。64K同步正弦波:64K的正弦波信号输出端口,幅度(05V)由W2调节。128K同步正弦波:128K的正弦波信号

5、输出端口,幅度(05V)由W3调节。非同步信号源:普通正弦波、三角波和方波信号输出端口,波形由S6选择;频率由S7、S8调节,它可产生频率为180Hz18KHz的正弦波、180Hz10KHz的三角波和250Hz250KHz的方波信号;幅度(04V)由W4调节。音乐输出:音乐片输出端口。音频信号输入:音频功放输入端口(功放输出信号幅度由W6调节)。K1:音乐片信号选择开关。K2:扬声器输出选择开关。W6:调节扬声器音量。实验一 码型变换实验一、 实验目的1、 了解几种常用的数字基带信号。2、 掌握常用数字基带传输码型的编码规则。3、 掌握常用CPLD实现码型变换的方法。二、 实验内容1、 观察N

6、RZ码、RZ码、AMI码、HDB3码、CMI码、BPH码的波形。2、 观察全0码或全1码时各码型的波形。3、 观察HDB3码、AMI码的正负极性波形。4、 观察RZ码、AMI码、HDB3码、CMI码、BPH码经过码型反变换后的输出波形。5、 自行设计码型变换电路,下载并观察波形。三、 实验器材1、 信号源模块 一块2、 号模块 一块3、 号模块 一块4、 20M双踪示波器 一台5、 连接线 若干四、 实验原理(一)基本原理在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。例如,在市区内利用电传机直接进行电报通信,或者利用中继方式在长距离上直接传输PCM信号等。这种不使

7、用载波调制装置而直接传送基带信号的系统,我们称它为基带传输系统,它的基本结构如图1-1所示。图1-1 基带传输系统的基本结构该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。这里信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。若一个变换器把数字基带信号变换成适合于基带信号传输的基带信号,则称此变换器为数字基带调制器;相反,把信道基带信号变换成原始数字基带信号的变换器,称之为基带解调器。基带信号是代码的一种电表

8、示形式。在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。单极性基带波形就是一个典型例子。再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。归纳起来,对传输用的基带信号的主要要求有两点:(1)对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2)对所选码型的电波形要求,期望电波形适宜于在信道中传输。(二)编码规则1、 NR

9、Z码NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。例如:2、 RZ码RZ码的全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。例如:3、 AMI码AMI码的全称是传号交替反转码。这是一种将信息代码0(空号)和1(传号)按如下方式进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1,-1,+1,-1,。例如:信息代码:1 0 0 1 1 0 0 0 1 1 1AMI码: +1 0 0-1+1 0 0 0-

10、1+1-1由于AMI码的传号交替反转,故由于它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。除了上述特点以外,AMI码还有编译码电路简单以及便于观察误码情况等优点,它是以种基本的线路码,在高密度信息流得数据传输中,得到广泛采用。但是,AMI码有一个重要缺点,即当它用来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。4、 HDB3码HDB3码是对AMI码的一种改进码,它的全称是三阶高密度双极性码。其编码规则如下:先检查消息代码(二进制)的连0情况,当没有4个或4个以上

11、连0串时,按照AMI码的编码规则对信息代码进行编码;当出现4个或4个以上连0串时,则将每4个连0小段的第4个0变换成与前一非0符号(+1或-1)同极性的符号,用V表示(即+1记为+V,-1记为-V),为使附加V符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻V符号也应极性交替。当两个相邻V符号之间有奇数个非0符号时,用取代节“000V”取代4连0信息码;当两个相邻V符号间有偶数个非0符号时,用取代节“B00V”取代4连0信息码。例如:代码: 1 0 0 0 0 1 0 0 0 0 1 1 000 0 1 1AMI码: -1 0 0 0 0 +1 0 0 0 0 -1 +1 0

12、00 0 -1 +1HDB3码:-1 0 0 0 -V +1 0 0 0 +V -1 +1 -B00 -V -1 +1HDB3码的特点是明显的,它除了保持AMI码的优点外,还增加了使连0串减少到至多3个的优点,而不管信息源的统计特性如何。这对于定时信号的恢复是十分有利的。HDB3码是CCITT推荐使用的码型之一。5、 CMI码CMI码是传号反转码的简称,其编码规则为:“1”码交替用“11”和“00”表示;“0”码用“01”表示。例如:代码: 1 1 0 1 0 0 1CMI码: 1 1 0 0 0 1 1 1 0 1 0 1 0 0这种码型有较多的电平跃变,因此含有丰富的定时信息。该码已被CC

13、ITT推荐为PCM(脉冲编码调制)四次群的接口码型。在光缆传输系统中有时也用作线路传输码型。6、 BPH码BPH码的全称是数字双相码(Digital Biphase),又称Manchester码,即曼彻斯特码。它是对每个二进制码分别利用两个具有2个不同相位的二进制新码去取代的码,编码规则之一是:001(零相位的一个周期的方波)110(相位的一个周期的方波)例如:代码:1 1 0 0 1 0 1双相码: 1 0 1 0 0 1 0 1 1 0 0 1 1 0双相码的特点是只使用两个电平,这种码既能提供足够的定时分量,又无直流漂移,编码过程简单。但这种码的带宽要宽些。(三)电路原理将信号源产生的N

14、RZ码和位同步信号BS送入U1(EPM3064)进行变换,可以直接得到各种单极性码和各种双极性码的正、负极性编码信号(因为CPLD的IO口不能直接接负电平,所以只能将分别代表正极性和负极性的两路编码信号分别输出,再通过外加电路合成双极性码),如HDB3码的正、负极性编码信号送入U2(CD4051)的选通控制端,控制模拟开关轮流选通正、负电平,从而得到完整的HDB3码。解码也同样需要将双极性的HDB3码变换成分别代表正极性和负极性的两路信号,再送入CPLD进行解码,得到NRZ码。其他双极性码的编、解码过程相同。各编码波形如图1-2所示图1-2 编码波形五、 输入、输出点参考说明1、 输入点说明NRZ:NRZ码输入点。BS:编码时钟输入点。BSR:解码时钟输入点。IN-A:正极性HDB3/AMI码编码输入

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号