物理学教程(第二版)上册课后答案9

上传人:平*** 文档编号:11340917 上传时间:2017-10-13 格式:DOCX 页数:19 大小:517.32KB
返回 下载 相关 举报
物理学教程(第二版)上册课后答案9_第1页
第1页 / 共19页
物理学教程(第二版)上册课后答案9_第2页
第2页 / 共19页
物理学教程(第二版)上册课后答案9_第3页
第3页 / 共19页
物理学教程(第二版)上册课后答案9_第4页
第4页 / 共19页
物理学教程(第二版)上册课后答案9_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《物理学教程(第二版)上册课后答案9》由会员分享,可在线阅读,更多相关《物理学教程(第二版)上册课后答案9(19页珍藏版)》请在金锄头文库上搜索。

1、第九章静电场91电荷面密度均为的两块 “无限大”均匀带电的平行平板如图 (A)放置,其周围空间各点电场强度E(设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的()题 9-1 图分析与解“无限大”均匀带电平板激发的电场强度为 ,方向沿带电平板法向向外,02依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).92下列说法正确的是()(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意

2、一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).93下列说法正确的是()(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与

3、解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*94在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将()(A) 沿逆时针方向旋转直到电偶极矩 p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电

4、场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩 p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).95精密实验表明,电子与质子电量差值的最大范围不会超过10 21 e,而中子电量与零差值的最大范围也不会超过10 21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况, 假设电子与质子电量差值的

5、最大范围为210 21 e,中子电量为10 21 e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为 eq21max081二个氧原子间的库仑力与万有引力之比为 .4620axGFge显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在10 21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.961964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 e32的上夸克和两个带 的下夸克构成.若将夸克作为经典粒子处理(夸克线

6、度约为10 20 m),e31中子内的两个下夸克之间相距2.6010 15 m .求它们之间的相互作用力.解由于夸克可视为经典点电荷,由库仑定律 rrreqeFN78.341412020F 与径向单位矢量e r 方向相同表明它们之间为斥力.97 点电荷如图分布,试求 P点的电场强度.分析 依照电场叠加原理, P点的电场强度等于各点电荷单独存在时在 P点激发电场强度的矢量和.由于电荷量为 q的一对点电荷在 P点激发的电场强度大小相等、方向相反而相互抵消,P点的电场强度就等于电荷量为2.0 q的点电荷在该点单独激发的场强度.解 根据上述分析 20201)/(41aqaEP题 9-7 图98若电荷Q

7、均匀地分布在长为 L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为204LrQE(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 20421r若棒为无限长(即L),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq Q dx/L,它在点P 的电场强度为 rqeE20d41整个带电体在点P的电场强度Ed接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒

8、上各电荷元在点P 的电场强度方向相同, Li(2) 若点P 在棒的垂直平分线上,如图(a)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 LyEjjEdsind证(1) 延长线上一点P 的电场强度 ,利用几何关系 rr x统一积分q20变量,则电场强度的方向 200220 412/14d4 LrQLrrLQxrLE/-P 沿x 轴.(2) 根据以上分析,中垂线上一点P的电场强度E 的方向沿y 轴,大小为 ErqLd4sin20利用几何关系 sin r/r, 统一积分变量,则2xr202/3220 411LrQEL/- 当棒长L时,若棒单位长度所带电荷为常量,

9、则P点电场强度 rrl022 /1im此结果与无限长带电直线周围的电场强度分布相同图(b).这说明只要满足r 2/L2 1,带电长直细棒可视为无限长带电直线.99一半径为R的半球壳,均匀地带有电荷,电荷面密度为,求球心处电场强度的大小.题 9-9 图分析这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第93节的例2可以看出,所有平行圆环在轴线上 P处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心 O处的电场强度.解将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点 O激发的电场强度为dsind2RSqiE2/320

10、d41rxq由于平行细圆环在点 O激发的电场强度方向相同,利用几何关系 , 统Rxcosrsin一积分变量,有 dcosin2 din2cos4141d0 303/20rxq积分得 0/04iE910 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为 ,而夹0erP角为2.叠加后水分子的电偶极矩大小为 ,方向沿对称轴线,如图所示 .由cos20erp于点O 到场点A 的距离x r 0 ,利用教材第5 3 节中电偶极

11、子在延长线上的电场强度 3041xE可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1水分子的电偶极矩 cos2s00erp在电偶极矩延长线上 303030 14124xxxE解2在对称轴线上任取一点A,则该点的电场强度 E20204coscos2xereE由于 xr0rcscs0代入得 2/3020 1cos4xxreE测量分子的电场时, 总有x r 0 , 因此, 式中,将上式化简并 xrxrcos21s1cos2 032/32/02略去微小量后,得 30cosxerE911两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为.(1) 求两导线构成的平面上任一点

12、的电场强度( 设该点到其中一线的垂直距离为x);(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析(1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由FqE ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F E.应该注意:式中的电场强度 E是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解(1) 设点 P在导线构成的平面上,E 、E 分别表示正、负带电导线在 P 点的电场强度,则有 iixr00021(2) 设F 、F 分别表示正、负带电导线单位长

13、度所受的电场力,则有 iEF02ri0显然有F F ,相互作用力大小相等,方向相反,两导线相互吸引 .912设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析方法1:作半径为R 的平面S与半球面S一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 01d0qSE这表明穿过闭合曲面的净通量为零,穿入平面S的电场强度通量在数值上等于穿出半球面S的电场强度通量.因而 SSd方法2:由电场强度通量的定义,对半球面S 求积分,即 SsE解1由于闭合曲面内无电荷分布,根据高斯定理,有 SSEd依照约定取闭合曲面的外法线方向为面元dS 的方向,

14、ER22cos解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为 rEeeesinincosrRSdsd2E2002sini913地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为 ,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的1mV20电子数表示).分析考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径 ( 为ER地球平均半径).由高斯定理 qRE0214dS地球表面电荷面密度 2902 mC6./qE单位面积额外电子数 25c13.)/(en914设在半径为 R的球体内电荷均匀分布,电荷体密度为 ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 s QErS0i24d上式中 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得iQ带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得时, Rr3024rEr

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号