电赛四旋翼飞行器

上传人:fe****16 文档编号:112809656 上传时间:2019-11-07 格式:DOC 页数:24 大小:581.50KB
返回 下载 相关 举报
电赛四旋翼飞行器_第1页
第1页 / 共24页
电赛四旋翼飞行器_第2页
第2页 / 共24页
电赛四旋翼飞行器_第3页
第3页 / 共24页
电赛四旋翼飞行器_第4页
第4页 / 共24页
电赛四旋翼飞行器_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《电赛四旋翼飞行器》由会员分享,可在线阅读,更多相关《电赛四旋翼飞行器(24页珍藏版)》请在金锄头文库上搜索。

1、 2014年电子设计竞赛四旋翼自主飞行器(G题) 2013年9月11日目录摘要 关键词1一系统方案21.1 控制系统的选择 21.2 飞行姿态控制的论证与选择.21.3 电机的选择 21.4 高度测量模块的论证与选择.21.5 电机调速模块的选择21.6 循迹模块的方案选择21.7 薄铁片拾取的方案的论证与选择 21.8 角速度与角加速度测量模块选择 3二设计与论证3 2.1控制方法设计3 2.1.1降落及飞行轨迹控制设计3 2.1.2飞行高度控制设计4 2.1.3飞行姿态控制设计4 2.1.4铁片拾取与投放控制设计4 2.2参数计算5三理论分析与计算. 53.1Pid控制算法分析.5.3.2

2、飞行姿态控制单元6四电路与程序设计7 4.1系统组成 7 4.2 原理框图 7 4.3电路图 8 4.4系统软件与流程图9五测试方案与测试条件 11 5.1测试方案115.2测试条件11六结论 11附录12附一:元器件明细表12附二:仪器设备清单12附三:源程序12摘要:本系统由数据采集、数据信号处理和飞行姿态和航向控制部分组成。系统选用STC89C52单片机作为主控芯片,对从MPU-6050芯片读取到的一系列数据进行PID算法处理并给飞行器的电调给出相应指令从而达到对飞行器的飞行姿态的控制。采用MPU-6050芯片采集四旋翼飞行器的三轴角速度和三轴角加速度数据。用红外传感器来检测出黑色指示线

3、,以保证飞行器不脱离指定飞行区域及达到指定圆形区域。利用超声波传感器来检测飞行器与地面的距离,以保证飞行器能越过一米示高线。利用电磁铁来吸取和投放铁片。关键词:STC89C52单片机 MPU-6050模块 激光传感器循迹 电磁铁拾取铁片 超声波测距定高 PID算法一 系统方案本系统主要由控制模块、薄铁片拾取、高度测量模块、电机调速模块、循迹模块、角速度和角加速度模块组成,下面分别论证这几个模块的选择。1.1控制系统的选择 STC89C52RC单片机作为主控芯片来控制飞行器的飞行姿态与方向。1.2 飞行姿态控制的论证与选择 方案一:单片机将从MPU-6050中读取出来的飞行原始数据进行PID算法

4、运算,得到当前的飞行器欧拉角,单片机得到这个欧拉角后根据欧拉角的角度及方向输出相应的指令给电调,从而达到控制飞行器平稳飞行的目的方案二:单片机将从MPU-6050中读取出来的飞行原始数据进行PID算法运算,得到当前飞行器的四元数,单片机再将数据融合,并对电调发出相应指令,从而达到控制飞行器的飞行姿态的目的。但四元数法需要进行大量的运算,且运算复杂。从算法的复杂程度及我们对算法的熟悉程度,我们选择方案一。1.3电机的选择方案一:采用有刷电机。有刷电机采用机械转向,寿命短,噪声大,产生电火花,效率低。它长期使用碳刷磨损严重,较易损坏,同时磨损产生了大量的碳粉尘,这些粉尘落轴承中,使轴承油加速干涸,

5、电机噪声进一步增大。有刷电机连续使用一定时间就需更换电机内碳刷。方案二:采用无刷电机。无刷电机以电子转向取代机械转向。无机械摩擦,无摩擦,无电火花,免维护且能做到更加密封等特点所以技术上要优于有刷电机。考虑到各方面,我们采用无刷电机,选用新西达A2212无刷电机。1.4高度测量模块的论证与选择 方案一:采用bmp085气压传感器测量大气压并转换为海拔高度,把当前的海拔测量值减去起飞时的海拔值即得飞机的离地高度。但芯片价格较贵,误差较大,而且以前也没用过这个芯片。方案二:采用HC-SR04超声波传感器测量飞行器当前的飞行高度。考虑到对元件的熟悉程度、元件的价格和程序的编写,选择方案二。1.5电机

6、调速模块的选择 由于本四旋翼飞行器选用的是无刷电机,所以电调只能选用无刷电机的电调,自己做电调需要的时间长,而且可能不稳定,所以直接用的是成品电调,我们选用电机配套的新西达A2212电调。1.6循迹模块的选择 普通的红外传感器检测的距离很近,无法在离地面一米以上的距离检测出地面的黑线,所以我们选择了漫反射远距离激光传感器,来检测指示线。1.7薄铁片拾取的选择方案一:在飞行器起飞时由系统控制机械臂拾取起铁片,到达B区放松机械臂,投下薄铁片。缺点:机械臂重量大,对飞行器的飞行姿态影响较大,薄铁片厚度非常小,不易拾取。 方案二:采用电磁铁拾取,用瑞萨MCU控制电磁铁,在飞行器起飞时吸取铁片,到B区后

7、投下铁片。优点:电磁铁体积小而且有较强的拾取能力而且好操作方便。 综上所述,我们选择用经济又灵活的电磁铁作为薄铁片的拾取工具,采用方案二1.8角速度与加速度测量模块选择 方案一:选用MMA7361 角度传感器测量飞行器的的与地面的角度,返回信号给单片机处理,从而保持飞行器的平衡。 方案二:用MPU-6050芯片采集飞行器的飞行数据,过采用MPU-6050整合的3轴陀螺仪、3轴加速器,功能MPU-6000(6050)整合了3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件

8、加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。免除了组合陀螺仪与加速器时之轴间差的问题,减少了大量的包装空间。 综上,选择方案二。二 设计与论证2.1控制方法设计 2.1.1降落及飞行轨迹控制 由于题中有指示线,所我们采用漫反射红外开关来识别地面的指示线,红外模块将识别指示线后的信号以高低电平的方式传给单片机,单片机对信号做出反应,控制电调,从而控制飞行器飞行轨迹。程序流程图如图一 图一 图二 2.1.2飞行高度控制 飞行高度的采

9、集采用超声波模块来实现,通过超声波发出时开始计时,收4到返回信号时停止计时,单片机利用声音在空气中的传播速度与时间的数学关系来计算出飞行器距离地面的时间,从而控制飞行器的飞行高度达到我们所需的高度。程序流程图如图二。 2.1.3飞行姿态控制 通过MPU6050模块来测量当前飞行器的三轴加速度和三轴角加速度,利用瑞萨单片机的IIC协议从MPU6050中读取出数据,解读飞行器的飞行姿态,并经过PID算法程序来对数据进行处理,得到当前欧拉角的值,并将处理后的信号传给电调,控制电机的转速,从而达到控制飞行器的飞行姿态的目的。程序流程图如图三。 2.1.4薄铁片拾取与投放控制 根据电磁铁的通电具有磁性,

10、断电磁性消失的原理,从A起飞时我们让单片机控制电磁铁通电,让飞行器吸取薄铁片飞向B区,到达B区后让电磁铁断电,从而投下薄铁片,让其落到B区。程序流程图如图四。 图三 图四2.2参数计算 本系统最主要的参数计算是对MPU-6050等传感器采集的原始飞行数据进行处理。 单片机从MPU-6050芯片获取的数据是飞行器的三轴角速度和三轴角加速度,MCU对数据进行PID算法处理可以得到飞行器当前的飞行姿态,PID是比例,积分,微分的缩写。比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,

11、甚至造成系统的不稳定。积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。三 理论分析与计算3.1Pid控制算法分析由于四旋翼飞行器由四路电机带动两对反向螺旋桨来产生推力,所以如何保证电机在平稳悬浮或上升状态时转速的一致性及不同动作时各个电机转速的比例关系是飞行器按照期望姿态飞行的关键。所以这里我们采用到pid控制理论把飞机的当前姿态

12、调整到期望姿态。比例积分微分被控对象r(t)e(t)u(t)C(t)_Pid控制是通过姿态采集模块发送回来的数据与期望姿态进行比对,如果存在误差,就对误差进行比例、积分、微分的调整,再将调整后的值加到当前电机上,从而达到调整的目的。比例调节的反应速度较快,而且调节作用明显,飞机出现俯仰和翻滚时能快速调节回来,但是稳定性较差,往往会调节过火;积分调节可以消除长期误差,排除外界因素的干扰,但是同样会降低系统整体的稳定性,使飞机发生震荡;微分调节可以预测被控设备的将来状态,及时的进行调整,而且对比例调节有抑制作用,加强单比例调节的稳定性,排除调节过度的问题。所以通过pid控制可以完全考虑到整个系统的过

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号