传感器原理和应用

上传人:ap****ve 文档编号:112786079 上传时间:2019-11-07 格式:PPT 页数:338 大小:5.74MB
返回 下载 相关 举报
传感器原理和应用_第1页
第1页 / 共338页
传感器原理和应用_第2页
第2页 / 共338页
传感器原理和应用_第3页
第3页 / 共338页
传感器原理和应用_第4页
第4页 / 共338页
传感器原理和应用_第5页
第5页 / 共338页
点击查看更多>>
资源描述

《传感器原理和应用》由会员分享,可在线阅读,更多相关《传感器原理和应用(338页珍藏版)》请在金锄头文库上搜索。

1、传感器原理与应用(上),目录,第一章传感器概述,第三章传感器的弹性敏感元件设计,第四章电阻应变式传感器,第五章电容式传感器,第六章电感式传感器,第七章压电式传感器,第八章压阻式传感器,第九章热电式传感器,第二章传感器的特性及标定,第1章 传感器概述,1.1 传感器的定义及分类 1.1.1传感器的定义 1.1.2传感器的分类 1.2 传感器的作用与地位 1.3 传感器技术的发展动向 1.3.1发现新现象 1.3.2开发新材料 1.3.3采用微细加工技术 1.3.4 传感器的智能化 1.3.5 仿生传感器,1.1 传感器的定义及分类,1.1.1 传感器的定义 能够把特定的被测量信息(如物理量化学量

2、、生物量等)按一定规律转换成某种可用信号的器件或装置,称为传感器。 所谓“可用信号”,是指便于传输、便于处理的信号。就目前而言,电信号最为满足便于传输、便于处理的要求。因此,也可以把传感器狭义地定义为:能把外界非电量信息转换成电信号输出的器件或装置。 目前只要谈到传感器,指的几乎都是以电为输出的传感器。除电信号以外,人们在不断探索和利用新的信号媒介。可以预料,当人类跨入光子时代,光信号能够更为快速、高效传输与处理时,一大批以光信号为输出的器件和装置将加入到传感器的家族里来。 传感器是生物体感官的工程模拟物;反过来,生物体的感官则可以看作是天然的传感器。,1.1.2 传感器的分类 现已发展起来的

3、传感器用途纷繁、原理各异、形式多样,就其分类方法也有多种,其中有两种分类法最为常用: 一是按外界输入信号变换至电信号过程中所利用的效应来分类。如利用物理效应进行变换的为物理传感器;利用化学反应进行变换的为化学传感器;利用生物效应进行变换的为生物传感器等; 二是按输入量分类。比如,输入信号是用来表征压力大小的,就称为压力传感器。这种分类法可将传感器分为位移(线位移和角位移)、速度、角速度、力、力矩、压力、流速、液面、温度、湿度、光、热、电压、电流、气体成分、浓度和粘度传感器等。,1.2 传感器的作用与地位,今天,信息技术对社会发展、科学进步起到了决定性的作用。现代信息技术的基础包括信息采集、信息

4、传输与信息处理。 传感技术与信息技术的关系:信息-采集-传感技术;信息-处理-计算机技术;信息-传输-通讯技术。传感器位于信息采集系统之首、检测与控制之前,是感知、获取与检测的最前端。 传感器广泛应用于各个学科领域:在基础学科和尖端技术的研究中; 在工业与国防领域; 在生物工程、医疗卫生、环境保护等。 可以肯定地说,未来的社会将是充满传感器的世界。,1.3 传感器技术的发展动向,传感器技术的主要发展动向: 一是传感器本身的基础研究,即研究新的传感器材料和工艺,发现新现象; 二是跟微处理器组合在一起的传感器系统的研究,即研究如何将检测功能与信号处理技术相结合,向传感器的智能化、集成化发展。 1.

5、3.1发现新现象 1.3.2开发新材料 1.3.3采用微细加工技术 1.3.4传感器的智能化 1.3.5仿生传感器,1.3.1 发现新现象,传感器的工作机理是基于各种效应、反应和物理现象的。重新认识如压电效应、热释电现象、磁阻效应等已发现的物理现象以及各种化学反应和生物效应,并充分利用这些现象与效应设计制造各种用途的传感器,是传感器技术领域的重要工作。同时还要开展基础研究,以求发现新的物理现象、化学反应和生物效应。各种新现象、反应和效应的发现可极大地扩大传感器的检测极限和应用领域。,1.3.2 开发新材料,随着物理学和材料科学的发展,人们已经在很大程度上能够根据对材料功能的要求来设计材料的组分

6、,并通过对生产过程的控制,制造出各种所需材料。目前最为成熟、先进的材料技术是以硅加工为主的半导体制造技术。例如,人们利用该项技术设计制造的多功能精密陶瓷气敏传感器有很高的工作温度,弥补了硅(或锗)半导体传感器温度上限低的缺点,可用于汽车发动机空燃比控制系统,大大地扩展了传统陶瓷传感器的使用范围。有机材料、光导纤维等材料在传感器上的应用,也已成为传感器材料领域的重大突破,引起国内外学者的极大关注。,1.3.3 采用微细加工技术,将硅集成电路技术加以移植并发展,形成了传感器的微细加工技术。这种技术能将电路尺寸加工到光波长数量级,并能形成低成本超小型传感器的批量生产。 微细加工技术除全面继承氧化、光

7、刻、扩散、淀积等微电子技术外,还发展了平面电子工艺技术、各向异性腐蚀、固相键合工艺和机械切断技术。利用这些技术对硅材料进行三维形状的加工,能制造出各式各样的新型传感器。例如,利用光刻、扩散工艺已制造出压阻式传感器,利用薄膜工艺已制造出快速响应的气敏、湿敏传感器等。日本横河公司综合利用微细加工技术,在硅片上构成孔、沟、棱锥、半球等各种形状的微型机械元件,并制作出了全硅谐振式压力传感器。,1.3.4 传感器的智能化,“电五官”与“电脑”的结合,就是传感器的智能化。智能化传感器不仅具有信号检测、转换功能,同时还具有记忆、存储、解析、统计处理及自诊断、自校准、自适应等功能。,1.3.5 仿生传感器,传

8、感器相当于人的五官,且在许多方面超过人体,但在检测多维复合量方面,传感器的水平则远不如人体。尤其是那些与人体生物酶反应相当的嗅觉、味觉等化学传感器,还远未达到人体感觉器官那样高的选择性。实际上,人体感觉器官由非常复杂的细胞组成并与人脑联接紧密,配合协调。工程传感器要完全替代人的五官,则须具备相应复杂细密的结构和相应高度的智能化,这一点目前看来还是不可能的事。但是,研究人体感觉器官,开发能够模仿人体嗅觉、味觉、触觉等感觉的仿生传感器,使其功能尽量向人自身的功能逼近,已成为传感器发展的重要课题。,第2章 传感器的特性及标定 2.1 传感器的静态特性 2.1.1 线性度 2.1.2 灵敏度 2.1.

9、3 迟滞 2.1.4 重复性 2.2 传感器的动态特性 2.2.l 传感器动态特性的数学模型 2.2.2 算子符号法与传递函数 2.2.3 频率响应函数 2.2.4 动态响应特性 2.3 传感器的标定 2.3.1 传感器的静态特性标定 2.3.2 传感器的动态标定,传感器所测量的物理量基本上有两种形式:一种是稳态(静态或准静态)的形式,这种形式的信号不随时间变化(或变化很缓慢);另一种是动态(周期变化或瞬态)的形式,这种形式的信号是随时间而变化的。 由于输入物理量形式不同,传感器所表现出来的输出输入特性也不同,因此存在所谓静态特性和动态特性。不同传感器有着不同的内部参数,它们的静态特性和动态特

10、性也表现出不同的特点,对测量结果的影响也就各不相同。 一个高精度传感器,必须同时具有良好的静态特性和动态特 性,这样它才能完成对信号的(或能量)无失真的转换。 以一定等级的仪器设备为依据,对传感器的动、静态特性进行实验检测,这个过程称为传感器的动、静态标定。本章讨论传感器的特性及标定。,2.1 传感器的静态特性,2.1.1 线性度 如果理想的输出(y)输入(x)关系是一条直线,即y = a0x,那么称这种关系为线性输出输入特性。 1.非线性输出输入特性 传感器的输出输入特性是非线性的,在静态情况下,如果不考虑滞后和蠕变效应,输出输入特性总可以用如下多项式来逼近 式中 x 输入信号; y 输出信

11、号; a0零位输出; a1传感器线性灵敏度; a2,a3,an非线性系数。对于已知的输出输入特性曲线,非线性系数可由待定系数法求得。,多项式代数方程的四种情况: (1)理想线性特性见图(a)。当 时, (2)输出-输入特性方程仅有奇次非线性项如图(c)所示,即 具有这种特性的传感器,在靠近原点的相当大范围内,输出输入特性基本上呈线性关系。并且,当大小相等而符号相反时,y也大小相等而符号相反,相对坐标原点对称,即 (3)输出-输入特性非线性项仅有偶次项,见图(b),即 具有这种特性的传感器,其线性范围窄,且对称性差,即 。但用两个特性相同的传感器差动工作,即能有效地消除非线性误差。 (4)输出-

12、输入特性有奇次项,也有偶次项,见图(d)。,2非线性特性的“线性化” 在实际使用非线性特性传感器时,如果非线性项次不高,在输入量不大的条件下,可以用实际特性曲线的切线或割线等直线来近似地代表实际特性曲线的一段,如图所示,这种方法称为传感器的非线性特性的线性化。所采用的直线称为拟合直线。,传感器的实际特性曲线与拟合直线不吻合的程度,在线性传感器中称“非线性误差”或“线性度”。常用相对误差的概念表示“线性度”的大小,即传感器的实际特性曲线与拟合直线之间的最大偏差的绝对值对满量程输出之比为 式中 el 非线性误差(线性度); 实际特性曲线与拟合直线之间的最大偏差值; yFS 满量程输出。,非线性误差

13、是以拟合直线作基准直线计算出来的,基准线不同,计算出来的线性度也不相同。因此,在提到线性度或非线性误差时,必须说明其依据了怎样的基本直线。 拟合直线的几种常见方法有: 1)最佳平均直线与独立线性度; 2)端点直线和端点线性度; 3)端点直线平移线; 4)最小二乘法直线和最小二乘法线性度。详见教科书P(810)。,2.1.2 灵敏度 线性传感器的校准线的斜率就是静态灵敏度,它是传感器的输出量变化和输入量变化之比,即 式中 kn静态灵敏度。 如位移传感器,当位移量Dx为lmm,输出量Dy为0.2mV时 ,灵敏度kn为0.2mV/mm。非线性传感器的灵敏度通常用拟合直线的斜率表示。非线性特别明显的传

14、感器,其灵敏度可用dy/dx表示,也可用某一小区域内拟合直线的斜率表示。,2.1.3 迟滞 迟滞表示传感器在输入值增长的过程中(正行程)和减少的过程中(反行程),同一输入量输入时,输出值的差别,如图所示,它是传感器的一个性能指标。该指标反映了传感器的机械部件和结构材料等存在的问题,如轴承摩擦、灰尘积塞、间隙不适当、螺钉松动、元件磨损(或碎裂)以及材料的内部摩擦等。迟滞的大小通常由整个检测范围内的最大迟滞值Dmax与理论满量程输出之比的百分数表示,即,2.1.4 重复性 传感器的输入量按同一方向作多次变化时,我们发现,各次检测所得的输出输入特性曲线往往不重复,如图所示。产生不重复的原因和产生迟滞

15、的原因相同。重复性误差eR通常用输出最大不重复误差Dmax与满量程输出yFS之比的百分数表示,即 式中 DmaxD1max与D2max两数值之中的最大者; D1max正行程多次测量的各个测试点输出值之间的最大偏差; D2max反行程多次测量的各个测试点输出值之间的最大偏差。,不重复误差是属于随机误差性质的,校准数据的离散程度是与随机误差的精度相关的,应根据标准偏差来计算重复性指标。重复性误差eR又可按下式来表示 式中 标准偏差。 服从正态分布误差,可以根据贝赛尔公式来计算 式中 yi 测量值; 测量值的算术平均值; n 测量次数。,2.2 传感器的动态特性,2.2.l 传感器动态特性的数学模型

16、 线性常系数微分方程 输入信号 输出信号。 ai、bi 决定于传感器的某些物理参数(除b00 外,通常 )。,常见的传感器,其物理模型通常可分别用零阶、一阶和二阶的常微分方程描述其输出输入动态特性。,零阶传感器 一阶传感器 二阶传感器,理论上讲,由传感器动态特性的数学模型可以计算出传感器的输入与输出的关系,但是对于一个复杂的系统和复杂的输入信号,采用传感器动态特性的数学模型求解很困难。因此,在信息论和控制论中,通常采用一些足以反映系统动态特性的函数,将系统的输出与输入联系起来。这些函数有传递函数、频率响应函数和脉冲响应函数等。,2.2.2算子符号法与传递函数,1.算子符号法,用算子D代表 d/dt,,2.传递函数:初始值均为零时,输出的拉氏变换和输入的拉氏变换之比,2.2.3频率响应函数:初始值均为零时,输出的傅立叶变换和输

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号