微生物学第六章微生物产能资料

上传人:f****u 文档编号:111723388 上传时间:2019-11-03 格式:PPT 页数:57 大小:989KB
返回 下载 相关 举报
微生物学第六章微生物产能资料_第1页
第1页 / 共57页
微生物学第六章微生物产能资料_第2页
第2页 / 共57页
微生物学第六章微生物产能资料_第3页
第3页 / 共57页
微生物学第六章微生物产能资料_第4页
第4页 / 共57页
微生物学第六章微生物产能资料_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《微生物学第六章微生物产能资料》由会员分享,可在线阅读,更多相关《微生物学第六章微生物产能资料(57页珍藏版)》请在金锄头文库上搜索。

1、第一节 微生物的产能代谢,能量代谢是新陈代谢中的核心问题。 中心任务:把外界环境中的各种初级能源转换成对一切生命活动都能使用的能源ATP。,有机物 最初能源 日光 通用能源 还原态无机物,化能自养菌,化能异养菌,光能营养菌,Cells require energy, either as light (phototrophs), inorganic chemicals (chemolithotrophs), or organic chemicals (chemoorganotrophs). Measured in calories (heat unit) or joules (work unit

2、). 1 calorie = 4.1840 joules. Physicists biologists typically use calories. Some biochemistry and microbiology texts use kilocalories, others have converted to kilojoules. I will use kcal. To compare lecture values (kcal) with text values (kJ), multiply by 4.184. Example: 40 kjoules = 40/4.184 = 9.5

3、6 kcal,Energy = capacity to do work,一、 生物氧化 分解代谢实际上是物质在生物体内经过一系列连续的氧化还原反应, 逐步分解并释放能量的过程,这个过程也称为生物氧化,是一个本能代谢过程。 在生物氧化过程中释放的能量可被微生物直接利用,也可通过能量转换存储在高能化合物(如ATP)中,以便逐步被利用,还有部分能量以热的形式释放到环境中。 不同类型微生物进行生物氧化所利用的物质是不同的,异养微生物利用有机物,自养微生物利用无机物,通过生物氧化进行产能代谢。,生物氧化的方式: 和氧的直接化合: C6H12O6 + 6O2 6CO2 + 6H2O,失去电子: Fe2+

4、Fe3+ + e -,化合物脱氢或氢的传递: CH3-CH2-OH CH3-CHO,生物氧化的功能:,产能(ATP) 产还原力【H】 小分子中间代谢物,生物氧化的过程,一般包括三个环节: 底物脱氢(或脱电子)作用 (该底物称作电子供体或供氢体) 氢(或电子)的传递 (需中间传递体,如NAD、FAD等) 最后氢受体接受氢(或电子) (最终电子受体或最终氢受体),底物脱氢的途径 1、 EMP途径 2、HMP 3、ED 4、TCA,二、 异养微生物的生物氧化 异养微生物氧化有机物的方式,根据氧化还原反应中的受体不同可分成发酵和呼吸两种。 1 、发酵(fermentation) 是指微生物细胞将有机物

5、氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。 发酵条件下有机化合物是部分地被氧化,释放一小部分能量,合成少量ATP(原因:底物碳原子只被部分氧化,初始电子供体和最终电子供体的还原电势相差不大)。发酵过程的氧化与有机物的还原偶联在一起。被还原的有机物来自于初始发酵的分解代谢。不需外界提供电子受体。,发酵种类很多,以微生物发酵葡萄糖最重要。生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解(glylolysis)。主要分为四个途径:EMP途径、HMP途径、ED途径、解酮酶途径。 (1)EMP途径(Embden-Meyerhof parthway) 分为两

6、个阶段: 第一阶段:不涉及氧化还原反应及能量释放的准备阶段,只生成两分子的主要中间代谢产物:甘油醛3-磷酸 第二阶段:发生氧化还原反应,合成ATP并形成两分子丙酮酸,每氧化一个葡萄糖分子,中间过程耗两个ATP,生成4个ATP,净得两分子ATP。 EMP途径可为微生物的生理活动提供ATP和NADH,其中间产物又可为微生物合成代谢提供骨架,并在一定条件下可逆转合成糖。,葡萄糖的 酵解作用 ( 又称:Embden -Meyerhof -Parnas途径, 简称:EMP途径),活化,移位,氧化,磷酸化,葡萄糖激活的方式,己糖异构酶,磷酸果糖激酶,果糖二磷酸醛缩酶,甘油醛-3-磷酸脱氢酶,磷酸甘油酸激酶

7、,甘油酸变位酶,烯醇酶,丙酮酸激酶,磷酸果糖激酶,EMP途径特点:,葡萄糖分子经转化成1,6二磷酸果糖后,在醛缩酶的催化下,裂解成两个三碳化合物分子,即磷酸二羟丙酮和3-磷酸甘油醛。 3-磷酸甘油醛被进一步氧化生成2分子丙酮酸, 1分子葡萄糖可降解成2分子3-磷酸甘油醛,并消耗2分子ATP。2分子3-磷酸甘油醛被氧化生成2分子丙酮酸,2分子NADH2和4分子ATP。,EMP途径关键步骤,1. 葡萄糖磷酸化1.6二磷酸果糖(耗能) 2. 1.6二磷酸果糖2分子3-磷酸甘油醛 3. 3-磷酸甘油醛丙酮酸 总反应式: 葡萄糖+2NAD+2Pi+2ADP 2丙酮酸+2NADH2+2ATP CoA 丙酮

8、酸脱氢酶 乙酰CoA, 进入TCA,葡萄糖激活的方式,好氧微生物:通过需要Mg2+和ATP的己糖激酶 厌氧微生物:通过磷酸烯醇式丙酮酸-磷酸转移酶系统,在葡萄糖进入细胞时即完成了磷酸化,磷酸果糖激酶,EMP途径的关键酶,在生物中有此酶就意味着存在EMP途径 需要ATP和Mg+ 在活细胞内催化的反应是不可逆的反应,(二) HMP途径 (戊糖磷酸途径) (Hexose Monophophate Pathway),是从葡萄糖-6-磷酸开始,即在单磷酸己糖基础上开始降解,故称为单磷酸己糖途径。 大多好氧和兼性厌氧微生物中都有HMP途径,而且在同一微生物中往往同时存在EMP和HMP途径,单独具其一者少。

9、,HMP途径: 葡萄糖经转化成6-磷酸葡萄糖酸后,在6-磷酸葡萄糖酸脱氢酶的催化下,裂解成5-磷酸戊糖和CO2。 磷酸戊糖进一步代谢有两种结局, 磷酸戊糖经转酮转醛酶系催化,又生成磷酸己糖和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径的一些酶,进一步转化为丙酮酸。 称为不完全HMP途径。 由六个葡萄糖分子参加反应,经一系列反应,最后回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化成CO2 和水),称完全HMP途径。,HMP途径降解葡萄糖的三个阶段,HMP是一条葡萄糖不经EMP途径和TCA循环途径而得到彻底氧化,并能产生大量NADPH+H+形式的还原力和多种中间代谢产物的代谢途径 1. 葡萄

10、糖经过几步氧化反应产生核酮糖-5-磷酸和CO2 2. 核酮糖-5-磷酸发生同分异构化或表异构化而分别产生核糖-5-磷酸和木酮糖-5-磷酸 3.上述各种戊糖磷酸在无氧参与的情况下发生碳架重排,产生己糖磷酸和丙糖磷酸,HMP途径关键步骤:,1. 葡萄糖6-磷酸葡萄糖酸 2. 6-磷酸葡萄糖酸5-磷酸核酮糖 5-磷酸木酮糖 5-磷酸核糖参与核酸生成 3. 5-磷酸核酮糖6-磷酸果糖+3-磷酸甘油醛(进入EMP,耗能阶段 C6 2C3 产能阶段 4 ATP 2ATP 2C3 2 丙酮酸 2NADH2 C6H12O6+2NAD+2ADP+2Pi 2CH3COCOOH+2NADH2+2H+2ATP+2H2

11、O,HMP途径的总反应,6 葡萄糖-6-磷酸+12NADP+6H2O 5 葡萄糖-6-磷酸+12NADPH+12H+12CO2+Pi,HMP途径的总反应,HMP途径的重要意义,为核苷酸和核酸的生物合成提供戊糖-磷酸。 产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成提供还原力,另方面可通过呼吸链产生大量的能量。 与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调剂戊糖供需关系。 途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱基合成、及多糖合成。 途径中存在37碳的糖,使具有该途径微生物的所能利用利用的碳源谱更为更为广泛。 通过该途径可产生许多种重要的发酵产物。如核

12、苷酸、若干氨基酸、辅酶和乳酸(异型乳酸发酵)等。 HMP途径在总的能量代谢中占一定比例,且与细胞代谢活动对其中间产物的需要量相关。,又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)裂解途径。 1952年在Pseudomonas saccharophila中发现,后来证明存在于多种细菌中(革兰氏阴性菌中分布较广)。 ED途径可不依赖于EMP和HMP途径而单独存在,是少数缺乏完整EMP途径的微生物的一种替代途径,未发现存在于其它生物中。,(三)ED途径,在G-分布较广,特别是假单胞菌和固氮菌的某些菌株中较多存在。 ED可不依赖于EMP、HMP而单独存在。但对于靠底物水平磷酸化获得ATP的厌氧菌而言

13、,ED途径不如EMP经济。,ED途径,ED途径,ED途径,ED途径,ED途径的特点,葡萄糖经转化为2-酮-3-脱氧-6-磷酸葡萄糖酸后,经脱氧酮糖酸醛缩酶催化,裂解成丙酮酸和3-磷酸甘油醛, 3-磷酸甘油醛再经EMP途径转化成为丙酮酸。结果是1分子葡萄糖产生2分子丙酮酸,1分子ATP。 ED途径的特征反应是关键中间代谢物2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)裂解为丙酮酸和3-磷酸甘油醛。ED途径的特征酶是KDPG醛缩酶. 反应步骤简单,产能效率低. 此途径可与EMP途径、HMP途径和TCA循环相连接,可互相协调以满足微生物对能量、还原力和不同中间代谢物的需要。好氧时与TCA循环相连,厌

14、氧时进行乙醇发酵.,ED途径的总反应,ATP C6H12O6 ADP KDPG ATP 2ATP NADH2 NADPH2 2丙酮酸 6ATP 2乙醇 (有氧时经过呼吸链) (无氧时进行细菌乙醇发酵),关键反应:2-酮-3-脱氧-6-磷酸葡萄糖酸的裂解 催化的酶:6-磷酸脱水酶,KDPG醛缩酶 相关的发酵生产:细菌酒精发酵 优点:代谢速率高,产物转化率高,菌体生成少,代谢副产物少,发酵温度较高,不必定期供氧。 缺点:pH5,较易染菌;细菌对乙醇耐受力低,ATP 有氧时经呼吸链 6ATP 无氧时 进行发酵 2乙醇,2ATP NADH+H+ NADPH+H+ 2丙酮酸,ATP C6H12O6 KD

15、PG,ED途径的总反应(续),由表可见,在微生物细胞中,有的同时存在多条途径来降解葡萄糖,有的只有一种。在某一具体条件下,拥有多条途径的某种微生物究竟经何种途径代谢,对发酵产物影响很大。,(四)磷酸解酮酶途径,存在于某些细菌如明串珠菌属和乳杆菌属中的一些细菌中,进行异型乳酸发酵过程中分解己糖和戊糖的途径。 进行磷酸酮解途径的微生物缺少醛缩酶,所以它不能够将磷酸己糖裂解为2个三碳糖。 磷酸酮解酶途径有两种: 磷酸戊糖酮解途径(PK)途径 磷酸己糖酮解途径(HK)途径,葡萄糖 6-P-葡萄糖 6-P-葡萄糖酸 5 -P-核酮糖 5 -P-木酮糖,3 -P-甘油醛 丙酮酸,乙酰磷酸 乙酰CoA 乙醛,ATP,ADP,NAD+,NADH+H+,CO2,乳酸,乙醇,异构化作用,NAD+,NADH+H+,磷酸戊糖酮解酶,CoA,Pi,2ADP+Pi,2ATP,-2H,-2H,-2H,NAD+,NADH+H+,磷酸戊糖酮解途径,磷酸戊糖酮解途径的特点:,分解1分子葡萄糖只产生1分子ATP,相当于EMP途径的一半; 几乎产生等量的乳酸、乙醇和CO2,磷酸己糖解酮途径,2葡萄糖 2葡萄糖-6-磷酸 6-磷酸果糖 6-磷酸-果糖,4-磷酸-赤藓糖 乙酰磷酸,2木酮糖-5-磷酸,2甘油醛 -3-磷酸 2乙酰磷

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号